【題目】如圖,拋物線經(jīng)過點(diǎn)A(1,0),B(4,0)與軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖①,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請(qǐng)說明理由.
(3)如圖②,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),連接BC,在線段BC上是否存在這樣的點(diǎn)M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)9;(3)存在點(diǎn)M的坐標(biāo)為()或()使△CQM為等腰三角形且△BQM為直角三角形
【解析】
(1)根據(jù)拋物線經(jīng)過A、B兩點(diǎn),帶入解析式,即可求得a、b的值.
(2)根據(jù)PA=PB,要求四邊形PAOC的周長最小,只要P、B、C三點(diǎn)在同一直線上,因此很容易計(jì)算出最小周長.
(3)首先根據(jù)△BQM為直角三角形,便可分為兩種情況QM⊥BC和QM⊥BO,再結(jié)合△QBM∽△CBO,根據(jù)相似比例便可求解.
解:(1)將點(diǎn)A(1,0),B(4,0)代入拋物線中,得:
解得:
所以拋物線的解析式為.
(2)由(1)可知,拋物線的對(duì)稱軸為直線.連接BC,交拋物線的對(duì)稱軸為點(diǎn)P,此時(shí)四邊形PAOC的周長最小,最小值為OA+OC+BC=1+3+5=9.
(3) 當(dāng)QM⊥BC時(shí),易證△QBM∽△CBO 所以 ,
又因?yàn)椤?/span>CQM為等腰三角形 ,所以QM=CM.設(shè)CM=x, 則BM=5- x
所以 所以.所以QM=CM=,BM=5- x=,所以BM:CM=4:3.
過點(diǎn)M作NM⊥OB于N,則MN//OC, 所以 ,
即 ,所以,
所以點(diǎn)M的坐標(biāo)為()
當(dāng)QM⊥BO時(shí), 則MQ//OC, 所以 , 即
設(shè)QM=3t, 則BQ=4t, 又因?yàn)椤?/span>CQM為等腰三角形 ,所以QM=CM=3t,BM=5-3t
又因?yàn)?/span>QM2+QB2=BM2, 所以(3t )2+(4t )2=(5-3t )2, 解得
MQ=3t=,, 所以點(diǎn)M的坐標(biāo)為().
綜上所述,存在點(diǎn)M的坐標(biāo)為()或()使△CQM為等腰三角形且△BQM為直角三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D是AB的中點(diǎn),E是直線BC上一點(diǎn),把△BDE沿直線ED翻折后,點(diǎn)B落在點(diǎn)F處,當(dāng)FD⊥BC時(shí),線段BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,過BD的中點(diǎn)O做EF⊥BD,分別與AB、CD交于點(diǎn)E、F.連接DE、BF.
(1)求證:四邊形BEDF是菱形;
(2)若M是AD中點(diǎn),聯(lián)結(jié)OM與DE交于點(diǎn)N,AD=OM=4,則ON的長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日6時(shí)至10時(shí),某交易平臺(tái)上一種水果的每千克售價(jià)、每千克成本與交易時(shí)間之間的關(guān)系分別如圖1、圖2所示(圖1、圖2中的圖象分別是線段和拋物線,其中點(diǎn)P是拋物線的頂點(diǎn)).在這段時(shí)間內(nèi),出售每千克這種水果收益最大的時(shí)刻是_____ ,此時(shí)每千克的收益是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)檢票口有A、B、C、D共4個(gè)檢票通道.甲、乙兩人到該景區(qū)游玩,兩人分別從4個(gè)檢票通道中隨機(jī)選擇一個(gè)檢票.
(1)甲選擇A檢票通道的概率是 ;
(2)求甲乙兩人選擇的檢票通道恰好相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=5,E是射線DC上的點(diǎn),連接AE,將△ADE沿直線AE翻折得△AFE.
(1)如圖①,點(diǎn)F恰好在BC上,求證:△ABF∽△FCE;
(2)如圖②,點(diǎn)F在矩形ABCD內(nèi),連接CF,若DE=1,求△EFC的面積;
(3)若以點(diǎn)E、F、C為頂點(diǎn)的三角形是直角三角形,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是直線x=1對(duì)于下列說法:①abc<0;②2a+b=0;③3a+c>0; ④當(dāng)﹣1<x<3時(shí),y>0;⑤a+b>m(am+b)(m≠1),其中正確有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,直線與雙曲線相交于A(-1,a)、B兩點(diǎn),BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com