【題目】ABC中,ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,BAC=90°

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖1,請(qǐng)你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);

當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),請(qǐng)你在圖2畫出圖形,判斷中的結(jié)論是否仍然成立,并證明你的判斷.

【答案】(1)線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CEBD.(2)線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CEBD.

【解析】

試題分析:線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,BAD=CAE,得到BAD≌△CAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90°,于是有CE=BD,CEBD.

結(jié)論仍然成立.證明的方法與(1)類似.

試題解析:結(jié)論:CE=BD,CEBD.理由如下:

如圖1中,AB=AC,BAC=90°線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,

AD=AE,∵∠BAC=DAE=90°,∴∠BAD=CAE,AB=AC,AD=AE,

∴△BAD≌△CAE,CE=BD,ACE=B,

∴∠BCE=BCA+ACE=90°,

線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CEBD.

結(jié)論仍然成立.理由如下:如圖2中,線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,

AE=AD,DAE=90°,AB=AC,BAC=90°,∴∠CAE=BAD,

∴△ACE≌△ABD,CE=BD,ACE=B,∴∠BCE=90°

所以線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為:CE=BD,CEBD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價(jià)格銷售一種成本價(jià)為40元的文化紀(jì)念杯,每星期可售出100只。后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),每只杯子的售價(jià)每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀(jì)念杯要想平均每星期獲利2240元,請(qǐng)回答:

(1)每只杯應(yīng)降價(jià)多少元?

(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該公司應(yīng)該按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間每天的定價(jià)為180元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.

1)若房?jī)r(jià)定為200元時(shí),求賓館每天的利潤(rùn);

2)房?jī)r(jià)定為多少時(shí),賓館每天的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB90°,EAB的中點(diǎn),ACDE于點(diǎn)F

1)求證:AC2ABAD;

2)求證:CEAD;

3)若AD5AB6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O 的直徑,CD⊙O的一條弦,且CD⊥AB于點(diǎn)E

1)求證:∠BCO=∠D;

2)若CD=,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在解方程(x22x22x22x-30時(shí),設(shè)x22x=y,則原方程可轉(zhuǎn)化為y22y-30,解得y1-1,y23,所以x22x=-1x22x=3,可得x1=x2=1,x3=3,x4=-1.我們把這種解方程的方法叫做換元法.對(duì)于方程:x2+3x=12,我們也可以類似用換元法設(shè)x+ =y,將原方程轉(zhuǎn)化為一元二次方程,再進(jìn)一步解得結(jié)果,那么換元得到的一元二次方程式是(

A.y23y120B.y2+y80

C.y23y140D.y23y100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1) 知識(shí)儲(chǔ)備

①如圖 1,已知點(diǎn) P 為等邊△ABC 外接圓的弧BC 上任意一點(diǎn).求證:PB+PC= PA.

②定義:在△ABC 所在平面上存在一點(diǎn) P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn) P 為△ABC

的費(fèi)馬點(diǎn),此時(shí) PA+PB+PC 的值為△ABC 的費(fèi)馬距離.

(2)知識(shí)遷移

①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:

如圖 2,在△ABC 的外部以 BC 為邊長(zhǎng)作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長(zhǎng)度即為△ABC 的費(fèi)馬距離.

②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費(fèi)馬點(diǎn) P(要求尺規(guī)作圖).

(3)知識(shí)應(yīng)用

①判斷題(正確的打√,錯(cuò)誤的打×):

ⅰ.任意三角形的費(fèi)馬點(diǎn)有且只有一個(gè)__________;

ⅱ.任意三角形的費(fèi)馬點(diǎn)一定在三角形的內(nèi)部__________.

②已知正方形 ABCD,P 是正方形內(nèi)部一點(diǎn),且 PA+PB+PC 的最小值為,求正方形 ABCD 的

邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠ACB90°,AC4cm,BC3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為lcm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t4).

1)當(dāng)t為何值時(shí),PQAC?

2)設(shè)APQ的面積為S,求St的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí),S取得最大值?S的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)圖象如圖,下列結(jié)論:①abc0;②2a+b0;③a-b+c0;④當(dāng)x≠1時(shí),a+bax2+bx:⑤4acb2.其中正確的有____________(只填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案