【題目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.

【答案】
(1)解:2x2﹣7x+3=0,

∴(x﹣3)(2x﹣1)=0,

∴x﹣3=0或2x﹣1=0,

解得:x=3或x=


(2)解:∵(x+4)2﹣5(x+4)=0,

(x+4)(x﹣1)=0,

∴x+4=0或x﹣1=0,

解得:x=﹣4或x=1


(3)解:x2﹣5x=﹣1,

x2﹣5x+ =﹣1+

即(x﹣ 2= ,

∴x﹣

即x1= ,x2=


(4)解:2x2﹣2 x﹣5=0,

∵a=2,b=﹣2 ,c=﹣5,

∴△=8+4×2×5=48>0,

∴x= =


【解析】(1)因式分解法求解可得;(2)提取公因式法求解可得;(3)配方法求解即可得;(4)公式法求解可得.
【考點精析】本題主要考查了配方法和因式分解法的相關(guān)知識點,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家(記為A)、他上學(xué)的學(xué)校(記為B)、書店(記為C)依次坐落在一條東西走向的大街上,小明家位于學(xué)校西邊250米處,書店位于學(xué)校東邊100米處,小明中午放學(xué)后,到書店買本輔導(dǎo)書,然后回家吃中午飯,下午直接去學(xué)校上課.

(1)試用數(shù)軸表示出小明家(A)、學(xué)校(B)、書店(C)的位置;

(2)計算出小明家與書店的距離;

(3)小明從中午放學(xué)離校到下午上學(xué)到校一共走了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小梅在瀏覽某電影評價網(wǎng)站時,搜索了最近關(guān)注到的甲、乙、丙三部電影,網(wǎng)站通過對觀眾的抽樣調(diào)查,得到這三部電影的評分數(shù)據(jù)統(tǒng)計圖分別如下:

甲、乙、丙三部電影評分情況統(tǒng)計圖

根據(jù)以上材料回答下列問題:

(1)小梅根據(jù)所學(xué)的統(tǒng)計知識,對以上統(tǒng)計圖中的數(shù)據(jù)進行了分析,并通過計算得到這三部電影抽樣調(diào)查的樣本容量,觀眾評分的平均數(shù)、眾數(shù)、中位數(shù),請你將下表補充完整:

甲、乙、丙三部電影評分情況統(tǒng)計表

電影

樣本容量

平均數(shù)

眾數(shù)

中位數(shù)

100

3.45

5

3.66

5

100

3

3.5

(2)根據(jù)統(tǒng)計圖和統(tǒng)計表中的數(shù)據(jù),可以推斷其中_______電影相對比較受歡迎,理由是

_______________________________________________________________________.(至少從兩個不同的角度說明你推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線 軸交于A、B兩點(點A在點B的左側(cè)),點B的坐標為(3,0),與 軸交于點C(0,-3),頂點為D。

(1)求拋物線的解析式及頂點D的坐標。
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值。
(3)點P是x軸上一點,是否存在點P使得△PBD與△CAB相似,若存在,請求出點P的坐標;若不存在,請說明理由。
(4)M是拋物線上一點,點N在 軸,是否存在點N,使得以點A,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛警車在高速公路的A處加滿油,以每小時60千米的速度勻速行駛.已知警車一次加滿油后,油箱內(nèi)的余油量y(升)與行駛時間x(小時)的函數(shù)關(guān)系的圖象如圖所示的直線l上的一部分.

(1)求直線l的函數(shù)關(guān)系式;

(2)如果警車要回到A處,且要求警車中的余油量不能少于10升,那么警車可以行駛到離A處的最遠距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.

(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,△ABC的頂點都在格點上,請解答下列問題:

(1)作出△ABC向左平移4個單位長度后得到的△A1B1C1,并寫出點C1的坐標;

(2)將△A1B1C1繞原點O逆時針旋轉(zhuǎn)90°得到△A2B2C2,請畫出旋轉(zhuǎn)后的△A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O(shè)為圓心的弧 度數(shù)為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求 的值;
(2)若OE與 交于點M,OC平分∠BOE,連接CM.說明CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.

查看答案和解析>>

同步練習(xí)冊答案