【題目】如圖,已知和均為等腰直角三角形,,點為的中點,過點與平行的直線交射線于點.
(1)當,,三點在同一直線上時(如圖1),求證:為的中點;
(2)將圖1中的繞點旋轉,當,,三點在同一直線上時(如圖2),求證:為等腰直角三角形;
(3)將圖1中繞點旋轉到圖3位置時,(2)中的結論是否仍成立?若成立,試證明之,若不成立,請說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)成立,證明見解析.
【解析】
(1)利用ASA證明,可得,易證結論;
(2)由及、為等腰直角三角形的性質可得,,,由SAS可證,由全等三角形的性質易證為等腰直角三角形;
(3)由及、為等腰直角三角形的性質可得,,由直角三角形兩銳角互余及三角形內角和定理可知,利用證明,由全等三角形的性質易證為等腰直角三角形.
證明:(1)∵
∴(兩直線平行,內錯角相等)
∵點為的中點
∴,在和中
∴
∴
∴為的中點
(2)∵
∴
∵為等腰直角三角形
∴
∵為等腰直角三角形
∴
∴
∵
∴
∵
∴
∵且
∴
∵
∴
∴
∴
∴
∴為等腰直角三角形
(3)(2)中的結論仍成立.
∵
∴
∵為等腰直角三角形
∴
∵為等腰直角三角形
∴
∵,
,
∴
∴
∵
∴
∴,
∴
∴為等腰直角三角形
科目:初中數(shù)學 來源: 題型:
【題目】中國扇文化有著深厚的文化底蘊,是民族文化的一個組成部分,它與竹文化、佛教文化有著密切關系.歷來中國被譽為制扇王國.扇子主要材料是:竹、木、紙、象牙、玳瑁、翡翠、飛禽翎毛、其它棕櫚葉、檳榔葉、麥桿、蒲草等也能編制成各種千姿百態(tài)的日用工藝扇,造型優(yōu)美,構造精制,經(jīng)能工巧匠精心鏤、雕、燙、鉆或名人揮毫題詩作畫,使扇子藝術身價倍增.折扇,古稱“聚頭扇“,或稱為撒扇,或折疊扇,以其收攏時能夠二頭合并歸一而得名.如圖,折扇的骨柄OA的長為5a,扇面的寬CA的長為3a,折扇張開的角度為n°,求出扇面的面積(用代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某校組織的“交通安全宣傳教育月”活動中,八年級數(shù)學興趣小組的同學進行了如下的課外實踐活動.具體內容如下:在一段筆直的公路上選取兩點A、B,在公路另一側的開闊地帶選取一觀測點C,在C處測得點A位于C點的南偏西45°方向,且距離為100米,又測得點B位于C點的南偏東60°方向.已知該路段為鄉(xiāng)村公路,限速為60千米/時,興趣小組在觀察中測得一輛小轎車經(jīng)過該路段用時13秒,請你幫助他們算一算,這輛小車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73,計算結果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b化為平方式的方法.
請你仿照小明的方法探索并解決下列問題.
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,則a= ,b= ;
(2)求7+4的算術平方根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在矩形ABCD中,BC=2,連接BD,把△ABD繞點B順時針旋轉后得到△FBE,旋轉角度小于360°.
(1)如圖1,當點E在BC的延長線上,且直線EF過點D,求AB的長.
(2)若AB=4,如圖2,取AB邊的中點P,過點P作直線EF的垂線PH,垂足為H.
① 若PH交線段BD于點G,當△BPG為等腰三角形時,求BG的長;
② 直接寫出PH長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點每個小方格的頂點叫格點,其中,,.
外接圓的圓心坐標是______;
外接圓的半徑是______;
已知與點D、E、F都是格點成位似圖形,則位似中心M的坐標是______;
請在網(wǎng)格圖中的空白處畫一個格點,使∽,且相似比為:1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點Q與點B在AC的同側,且AQ⊥AC.
(1)如圖1,點Q不與點A重合,連結CQ交AB于點P.設AQ=x,AP=y,求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)是否存在點Q,使△PAQ與△ABC相似,若存在,求AQ的長;若不存在,請說明理由;
(3)如圖2,過點B作BD⊥AQ,垂足為D.將以點Q為圓心,QD為半徑的圓記為⊙Q.若點C到⊙Q上點的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com