【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC=,cot∠ABC=,點(diǎn)D是AC的中點(diǎn).
(1)求線段BD的長;
(2)點(diǎn)E在邊AB上,且CE=CB,求△ACE的面積.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)直角三角的特點(diǎn),由∠ABC的正切值求出AC的長,然后根據(jù)中點(diǎn)的性質(zhì)求出CD,再根據(jù)勾股定理可求解;
(2)過C作CH⊥AB于H,構(gòu)造直角三角形,然后根據(jù)銳角三角函數(shù)求解.
試題解析:(1)Rt△ABC中,∠ACB=90°,BC=,cot∠ABC=,
∴AC= ,
∵點(diǎn)D是AC的中點(diǎn),
∴CD=AC=,
∴Rt△BCD中,BD==;
(2)如圖,過C作CH⊥AB于H,
∵BC=,cot∠ABC=,
∴CH=,BH=2,
∵CE=CB,
∴EH=BH=1,
∵∠ACB=90°,BC=,AC=,
∴AB=3,
∴AE=3﹣2=1,
∴△ACE的面積=×AE×CH=×1×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃山位于安徽省南部,是世界文化與自然雙重遺產(chǎn),世界地質(zhì)公園,國家級(jí)旅游景區(qū),全國文明風(fēng)景旅游區(qū)示范點(diǎn),中華十大名山,天下第一奇山.
暑假期間,太和縣某學(xué)校組織七年級(jí)學(xué)生到黃山游學(xué),如果租用甲種客車2輛,乙種客車3輛,則可載180人,如果租用甲種客車3輛,乙種客車1輛,則可載165人.
(1)請(qǐng)問甲、乙兩種客車每輛分別能載客多少人?
(2)若該學(xué)校七年級(jí)有303名學(xué)生參加這次游學(xué)活動(dòng),學(xué)校計(jì)劃每輛車安排一名老師,老師也需一個(gè)座位.
①現(xiàn)打算同時(shí)租甲、乙兩種客車共8輛,請(qǐng)幫助學(xué)校設(shè)計(jì)租車方案.
②旅行前,學(xué)校的一名老師由于特殊情況,學(xué)校只能安排7名老師,為保證所租的每輛車均有一名老師,租車方案調(diào)整為:同時(shí)租65座、45座和30座的大小三種客車,出發(fā)時(shí),所租的三種客車的座位恰好坐滿,請(qǐng)問學(xué)校的租車方案如何安排?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A. 袋子中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中隨機(jī)地取出一個(gè)球是黃球
B. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6
C. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
D. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=-2x+5 的圖像分別與 x 軸,y 軸交于點(diǎn)A、B,以線段AB 為邊在第一象限內(nèi)作等腰 RtABC,BAC=90 ,求過 B、C 兩點(diǎn)的直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程(是整數(shù)).
⑴.求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
⑵.若方程的兩個(gè)實(shí)數(shù)根分別為(其中),設(shè),判斷是否為變量的函數(shù)?如果是,請(qǐng)寫出函數(shù)表達(dá)式;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)求值:
(2)用消元法解方程組時(shí),兩位同學(xué)的解法如下:
解法一:
由①-②,得.
解法二:
由②得,,③
把①代入③,得.
①反思:上述兩個(gè)解題過程中有無計(jì)算錯(cuò)誤?若有誤,請(qǐng)?jiān)阱e(cuò)誤處打“×”.
②請(qǐng)選擇一種你喜歡的方法,完成解答.
(3)求不等式組的正整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A為鈍角,AB=20cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā)以3cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)△APQ是等腰三角形時(shí),運(yùn)動(dòng)的時(shí)間是( )
A.2.5sB.3sC.3.5sD.4s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空,請(qǐng)?jiān)诶ㄌ?hào)里面填寫對(duì)應(yīng)的推理的理由.如圖,已知:直線AB、CD被直線BC所截;直線BC、DE被直線CD所截,∠1+∠2 =180°,且∠1=∠D,求證:BC∥DE.
證明:∵∠1+∠2=180°(已知)
又∵∠1=∠3 .
∴∠2+∠3=180°(等量代換)
∴AB∥ .
∴∠4=∠1 .
又∵∠1=∠D .
∴∠D= (等量代換)
∴BC∥DE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com