【題目】如圖,在 RtABC,ACB=90°,AC=BC,分別過AB作直線的垂線,垂足分別為M、N

(1)求證:AMC≌△CNB;

(2)若AM=3,BN=5,求AB的長.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)由垂直定義得∠AMC =∠BNC=90°,再根據(jù)同角的余角相等得∠MAC=∠NCB,再由AAS證明△AMC≌△CNB.

(2)由△AMC≌△CNB得出CM=BN=5,再利用勾股定理就能計(jì)算BC,從而算出AB.

:(1)∵AM⊥l,BNl,∠ACB=90°,

∴∠AMC=∠ACB=∠BNC=90°

∴∠MAC+∠MCA=90°,MCA+NCB=180﹣90°=90°,

∴∠MAC=∠NCB,

AMCCNB中,

∴△AMC≌△CNBAAS);

(2)由(1)知 △AMC≌△CNB,

CM=BN=5,

∴Rt△ACM中,AC=,

∵Rt△ABC,ACB=90°,AC=BC=,

AB===2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.

(1)用一個矩形隨意框住4個數(shù),把其中最小的數(shù)記為,另三個數(shù)用含式子表示出來,當(dāng)被框住的4個數(shù)之和等于418時,值是多少?

(2)被框住的4個數(shù)之和能否等于724?如果能,請求出此時x值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OD恰為∠BOE的平分線.

(1)圖中∠BOC的補(bǔ)角是 把符合條件的角都填出來);

(2)若∠AOD=145°,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;

(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A=∠D,∠EGC=∠FHB

(1)求證:ABCD

(2)求證:∠E=∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩條寬度都為3的紙條重疊在一起,使ABC=60°,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,點(diǎn)OAC邊上的一個動點(diǎn),過點(diǎn)O作直線MNBC,設(shè)MNBCA的外角平分線CF于點(diǎn)F,ACB內(nèi)角平分線CEE

1求證:EO=FO;

2當(dāng)點(diǎn)O運(yùn)動到何處時,四邊形AECF是矩形?并證明你的結(jié)論;

3AC邊上存在點(diǎn)O使四邊形AECF是正方形,猜想ABC的形狀并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是( 。

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點(diǎn)A(1,4).

(1)求這個一次函數(shù)的解析式;

(2)試判斷點(diǎn)B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案