【題目】如圖,直線ABCD相交于點(diǎn)O,OD恰為∠BOE的平分線.

(1)圖中∠BOC的補(bǔ)角是 把符合條件的角都填出來);

(2)若∠AOD=145°,求∠AOE的度數(shù).

【答案】(1)∠BOD或∠EOD或∠AOC;(2)110°.

【解析】1)根據(jù)角平分線、對(duì)頂角及互補(bǔ)的定義確定∠BOC的補(bǔ)角.

2)根據(jù)互補(bǔ)先求出∠BOD,再根據(jù)角平分線的定義得到∠EOD的度數(shù)再根據(jù)角的和差關(guān)系求出∠AOE的度數(shù).

1圖中∠BOC的補(bǔ)角是BODEOD AOC ;

2)∵∠AOD=145°(已知),

AOD+∠BOD=180°(補(bǔ)角的定義),

∴∠BOD=180°-∠AOD=180°-145°=35°.

CD平分∠BOE,

∴∠BOD=∠DOE=35°,

∴∠AOE=∠AOD-∠DOE=145°-35°=110°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三邊長(zhǎng)分別為a,bc,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)F是AD的中點(diǎn),過點(diǎn)D作DE∥AC,交CF的延長(zhǎng)線于點(diǎn)E,連接BE,AE.

(1)求證:四邊形ACDE是平行四邊形;

(2)若AB=AC,試判斷四邊形ADBE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,已知AD>AB.

(1)實(shí)踐與操作:作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,FG,H分別是邊ABBC,CD,DA的中點(diǎn),連接EF,FG,GH,HE.

(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(2)當(dāng)BD,AC滿足什么條件時(shí),四邊形EFGH是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的滄州——我最喜愛的滄州小吃”調(diào)查活動(dòng),將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計(jì)圖:

調(diào)查問卷

在下面四種滄州小吃中,你最喜愛的是____(單選)

A泊頭老豆腐   B.羊腸子 C.連鎮(zhèn)燒雞   D.油酥燒餅

請(qǐng)根據(jù)所給信息解答以下問題:

(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若全校有2000名同學(xué),請(qǐng)估計(jì)全校同學(xué)中最喜愛“泊頭老豆腐”的同學(xué)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“富春包子”是揚(yáng)州特色早點(diǎn),富春茶社為了了解顧客對(duì)各種早點(diǎn)的喜愛情況,設(shè)計(jì)了如右圖的調(diào)查問卷,對(duì)顧客進(jìn)行了抽樣調(diào)查.根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解決下列問題:

1)條形統(tǒng)計(jì)圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計(jì)圖中“蟹黃包”部分的圓心角為 °;

2)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)富春茶社1000名顧客中喜歡“湯包”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABCACB=90°,AC=BC,分別過A、B作直線的垂線,垂足分別為MN

(1)求證:AMC≌△CNB;

(2)若AM=3,BN=5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做投擲骰子(質(zhì)地均勻的正方體)試驗(yàn),她們共做了60次試驗(yàn),試驗(yàn)的結(jié)果如下:

朝上的點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

7

9

6

8

20

10

(1)計(jì)算“3點(diǎn)朝上”的頻率和“5點(diǎn)朝上”的頻率.

(2)小穎說:“根據(jù)上述試驗(yàn),一次試驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是100次”.小穎和小紅的說法正確嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案