【題目】如圖,將△ABC的高AD四等分,過每一個(gè)分點(diǎn)作底邊的平行線,把三角形的面積分成四部分S1S2、S3S4,則S1S2S3S4等于( 。

A.1234B.2345C.1357D.3579

【答案】C

【解析】

由△ABC的高AD四等分,可得從上到下三角形△1、△2、△3、△4的相似比為1234,根據(jù)相似三角形面積的比等于相似比的平方,可知從上到下三角形△1、△2、△3、△4的面積比為14916,即可得把三角形的面積分成四部分S1、S2S3、S4之比.

解:∵△ABC的高AD四等分,且過每一個(gè)分點(diǎn)作底邊的平行線,

∴從上到下三角形△1、△2、△3、△4的相似比為1234,

∴從上到下三角形△1、△2、△3、△4的面積比為S1S2S3S414916,

∵如圖S2S2S1,S3S3S2,S4S4S3,

S1S2S3S41:(41):(94):(169)=1357.故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個(gè)實(shí)數(shù)根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=CD,若點(diǎn)E、F分別為邊BC、CD上的兩點(diǎn),且∠EAF=CAD

1)求證:△ADF∽△ACE;

2)求證:AE=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線yax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(20).OC3OB

1)求拋物線的解析式;

2)若點(diǎn)P是線段AC下方拋物線上的動(dòng)點(diǎn),求三角形PAC面積的最大值.

3)在(2)的條件下,△PAC的面積為S,其中S為整數(shù)的點(diǎn)P好點(diǎn),則存在多個(gè)好點(diǎn),則所有好點(diǎn)的個(gè)數(shù)為   

4)在(2)的條件下,以PA為邊向直線AC右上側(cè)作正方形APHG,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變,當(dāng)頂點(diǎn)HG恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過A商品獲利潤(rùn)y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過A商品所獲的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作等邊三角形AB1C1,△ABC與△AB1C1公共部分的面積記為S1,再以等邊三角形AB1C1B1C1上的高AB2為邊作等邊三角形AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2……以此類推,那么S3_____.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線的對(duì)稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實(shí)數(shù)根;③a-b+c0;④的最小值為3,其中正確結(jié)論的個(gè)數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)求出拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最小值;

2)求出拋物線與x軸、y軸交點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,-3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD.過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE

1)用含m的代數(shù)式表示a;

2)求證:為定值;

3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F.探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接CF,以線段GF、ADAE的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形?如果存在,只要找出一個(gè)滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案