【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個交點(diǎn),現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實(shí)數(shù)根;③a-b+c0;④的最小值為3,其中正確結(jié)論的個數(shù)是___________.

【答案】3

【解析】

從拋物線與x軸最多一個交點(diǎn)及ba0,可以推斷拋物線最小值最小為0,對稱軸在y軸左側(cè),并得到b2-4ac≤0,從而得到①為正確,②錯誤;由x=-1x=-2y都大于或等于零可以得到③④正確.

ba0
-0,所以①正確;
∵拋物線與x軸最多有一個交點(diǎn),
b2-4ac≤0,
∴關(guān)于x的方程ax2+bx+c=0有兩個相等的實(shí)數(shù)根或無實(shí)數(shù)根;故②錯誤,
a0及拋物線與x軸最多有一個交點(diǎn),
x取任何值時,y≥0
∴當(dāng)x=-1時,a-b+c≥0;所以③正確;
當(dāng)x=-2時,4a-2b+c≥0,
a+b+c≥3b-3a
a+b+c≥3b-a),
≥3,所以④正確.
故答案為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的的頂點(diǎn)為.

1)頂點(diǎn)的坐標(biāo)為 .

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).軸且

①點(diǎn)的坐標(biāo)為

②過點(diǎn)軸的垂線,若直線與拋物線交于兩點(diǎn),該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC的高AD四等分,過每一個分點(diǎn)作底邊的平行線,把三角形的面積分成四部分S1S2、S3、S4,則S1S2S3S4等于(  )

A.1234B.2345C.1357D.3579

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC5cm,∠BAC60°,動點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以2cm/s的速度向點(diǎn)A勻速運(yùn)動,同時動點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以cm/s的速度向點(diǎn)B勻速運(yùn)動,設(shè)運(yùn)動時間為ts0t5),連接MN

發(fā)現(xiàn):BM   cm,BN   cm;(用含t的式子來表示)

猜想:(1)若BMBN,求t值;

2)若△MBN與△ABC相似,求t值.

探究:是否存在符合條件的t,使△BMN與四邊形AMNC面積相等?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD//BC,AD=2,AB=5BC=10,點(diǎn)E是邊BC上的一個動點(diǎn)(不與B,C重合),作∠AEF=AEB,使邊EF交邊CD于點(diǎn)F,(不與C,D重合),線段BE=______________時,△ABE與△CEF相似。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。

1)在如圖的坐標(biāo)系中求拋物線的解析式。

(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠用天時間生產(chǎn)一款新型節(jié)能產(chǎn)品,每天生產(chǎn)的該產(chǎn)品被某網(wǎng)店以每件元的價格全部訂購,在生產(chǎn)過程中,由于技術(shù)的不斷更新,該產(chǎn)品第天的生產(chǎn)成本(元/件)與(天)之間的關(guān)系如圖所示,第天該產(chǎn)品的生產(chǎn)量(件)與(天)滿足關(guān)系式

天,該廠生產(chǎn)該產(chǎn)品的利潤是   元;

設(shè)第天該廠生產(chǎn)該產(chǎn)品的利潤為元.

①求之間的函數(shù)關(guān)系式,并指出第幾天的利潤最大,最大利潤是多少?

②在生產(chǎn)該產(chǎn)品的過程中,當(dāng)天利潤不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點(diǎn)A逆時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為60°時,箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD90厘米,DE30厘米,EC40厘米.

1)求點(diǎn)D'BC的距離;

2)求E、E'兩點(diǎn)的距離.

查看答案和解析>>

同步練習(xí)冊答案