【題目】在平面直角坐標(biāo)系中,記函數(shù)的圖象為,正方形的對稱中心與原點重合,頂點的坐標(biāo)為(2,2),點在第四象限.
(1)當(dāng)=1時.
①求的最低點的縱坐標(biāo);
②求圖象上所有到軸的距離為2的橫坐標(biāo)之和.
③若當(dāng)≤≤時,-9≤≤2,則、的對應(yīng)值為 .
(2)當(dāng)圖象與正方形的邊恰好有兩個公共點時,直接寫出的取值范圍.
【答案】(1)①-9;②;③a=-2,b=;(2)當(dāng)或或時圖象G與正方形ABCD的邊恰好有兩個公共點
【解析】
(1)①將n=1分別代入兩個函數(shù)解析式,分別求出其頂點坐標(biāo)即可得出結(jié)論;
②分別求出兩函數(shù)值為2時對應(yīng)的x的值,再求和即可;
③分別求出y=-9,y=2時對應(yīng)的x的值,即可確定a,b的值;
(2)分三種情況討論,由圖象G與正方形ABCD的邊恰好有兩個公共點,列出不等式,可求解.
(1)①把代入得,,
,
∴其頂點坐標(biāo)為;
把代入(x≥0)得,
∴其頂點坐標(biāo)為(3,-9),
∵a>0,
∴函數(shù)和函數(shù)的圖象均開口向上,
∴圖象G有最低點,最低點的縱坐標(biāo)為:-9;
②對于,當(dāng)y=2時,,
解得,,
對于,當(dāng)y=2時,
解得,,
∴圖象上所有到軸的距離為2的橫坐標(biāo)之和為:;
③當(dāng)y=-9時,即,解得x1=x2=3;
當(dāng)y=2時,,
∴當(dāng)-9≤≤2時,-2≤x≤,
又≤≤
∴a=-2,b=
(2)對于
若的頂點在正方形ABCD內(nèi)部時,
,,
,且,
,
此時與正方形ABCD的邊也有一個交點,
符合題意;
若的頂點不在正方形ABCD的內(nèi)部時,且與正方形的邊有一個交點,
,
即與正方形ABCD的邊有一個交點,
;
若的頂點在正方形ABCD的邊上時,圖象G與正方形ABCD的邊恰好有兩個公共點,
,
,
綜上所述,當(dāng)或或時圖象G與正方形ABCD的邊恰好有兩個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在建設(shè)港珠澳大橋期間,大橋的規(guī)劃選線須經(jīng)過中華白海豚國家級白然保護(hù)區(qū)—區(qū)域或區(qū)域.為實現(xiàn)白海豚“零傷亡,不搬家”的目標(biāo),需合理安排施工時間和地點,為此,海豚觀察員在相同條件下連續(xù)出海天,在區(qū)域、兩地對中華白海豚的蹤跡進(jìn)行了觀測和統(tǒng)計,過程如下,請補充完整.(單位:頭)
(收集數(shù)據(jù))
連續(xù)天觀察中華白海豚每天在區(qū)域、區(qū)域出現(xiàn)的數(shù)目情況,得到統(tǒng)計結(jié)果,并按從小到大的順序排列如下:
區(qū)域 | ||||||||||
區(qū)域 | ||||||||||
(整理、描述數(shù)據(jù))
(1)按如下數(shù)段整理、描述這兩組數(shù)據(jù),請補充完整:
海豚數(shù) | |||||
區(qū)域 | _________ | _________ | |||
區(qū)域 |
(2)兩組數(shù)據(jù)的平均數(shù)、中位數(shù),眾數(shù)如下所示:
觀測點 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
區(qū)域 | |||
區(qū)域 |
請?zhí)羁眨荷媳碇兄形粩?shù)_______,,眾數(shù)______;
(3)規(guī)劃者們選擇了區(qū)域為大橋的必經(jīng)地,為減少施工對白海豚的影響,合理安排施工時間,估計在接下來的天施工期內(nèi),區(qū)域大約有多少天中華白海豚出現(xiàn)的數(shù)目在的范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2+m-1(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖像的頂點都在函數(shù)y=x-1的圖像上.
(2)若該函數(shù)的圖像與函數(shù)y=x+b的圖像有兩個交點,則b的取值范圍為( )
A.b>0 B.b>-1 C.b>- D.b>-2
(3)該函數(shù)圖像與坐標(biāo)軸交點的個數(shù)隨m的值變化而變化,直接寫出交點個數(shù)及對應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,.
(1)請用尺規(guī)作圖的方法在邊上確定點,使得點到邊的距離等于的長;(保留作用痕跡,不寫作法)
(2)在(1)的條件下,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公大樓正前方有一根高度是15米的旗桿,從辦公大樓頂端測得旗桿頂端的俯角是45°,旗桿底端到大樓前梯坎底邊的距離是10米,梯坎坡長是10米,梯坎坡度=1:,則大樓的高為______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進(jìn)價分別為2000元、1700元的A、B兩種型號的空調(diào),如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(進(jìn)價、售價均保持不變,利潤=銷售總收入進(jìn)貨成本)
(1)求A、B兩種型號的空調(diào)的銷售單價;
(2)若超市準(zhǔn)備用不多于54000元的金額再采購這兩種型號的空調(diào)共30臺,求A種型號的空調(diào)最多能采購多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線于點F.
(1)求證:.
(2)如果,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名大學(xué)畢業(yè)生響應(yīng)國家“自主創(chuàng)業(yè)”的號召,在成都市高新區(qū)租用了一個門店,聘請了兩名員工,計劃銷售一種產(chǎn)品.已知該產(chǎn)品成本價是20元/件,其銷售價不低于成本價,且不高于30元/件,員工每人每天的工資為200元.經(jīng)過市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求每件產(chǎn)品銷售價為多少元時,每天門店的純利潤最大?最大純利潤是多少?(純利潤=銷售收入﹣產(chǎn)品成本﹣員工工資)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com