【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)A在x軸正半軸,點(diǎn)C在y軸正半軸,點(diǎn)D是邊BC的中點(diǎn),反比例函數(shù)(k>0,x>0)的圖象經(jīng)過B,D.若點(diǎn)C的縱坐標(biāo)為6,點(diǎn)D的橫坐標(biāo)為3.5,則k的值是( 。
A. 6B. 8C. 12D. 14
【答案】D
【解析】
由題意可得C的坐標(biāo)為(0,6),設(shè)D(3.5,),由D是中點(diǎn),可知點(diǎn)B的橫坐標(biāo)為7,縱坐標(biāo)為=k﹣6,即點(diǎn)B的坐標(biāo)為(7,k﹣6),代入反比例函數(shù)解析式求k即可.
解:∵點(diǎn)C的縱坐標(biāo)為6,點(diǎn)D的橫坐標(biāo)為3.5,反比例函數(shù)(k>0,x>0)的圖象經(jīng)過B,D.
∴C(0,6),D(3.5,),
∵點(diǎn)D是邊BC的中點(diǎn),
∴點(diǎn)B的坐標(biāo)為(7,k﹣6),
∴7(k﹣6)=k,
解得k=14,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動(dòng),圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若海靜中學(xué)共有1500名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+4x-1與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,AB∥x軸交拋物線于點(diǎn)A,B,點(diǎn)A在點(diǎn)B的左側(cè),且兩點(diǎn)均在第一象限,BH⊥CD于點(diǎn)H.設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)當(dāng)m=1時(shí),求AB的長(zhǎng).
(2)若AH=(CH-DH),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,BD為⊙O的直徑,點(diǎn)A、C在⊙O上并位于BD的兩側(cè),∠ABC=45°,連結(jié)CD、OA并延長(zhǎng)交于點(diǎn)F,過點(diǎn)C作⊙O的切線交BD延長(zhǎng)線于點(diǎn)E.
(1)求證:∠F=∠ECF;
(2)當(dāng)DF=6,tan∠EBC=,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中我們經(jīng)常會(huì)使用到訂書機(jī),如圖MN是裝訂機(jī)的底座,AB是裝訂機(jī)的托板AB始終與底座平行,連接桿DE的D點(diǎn)固定,點(diǎn)E從A向B處滑動(dòng),壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長(zhǎng)度為20cm,BD=cm,壓柄與托板的長(zhǎng)度相等.
(1)當(dāng)托板與壓柄的夾角∠ABC=30°時(shí),如圖①點(diǎn)E從A點(diǎn)滑動(dòng)了2cm,求連接桿DE的長(zhǎng)度.
(2)當(dāng)壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個(gè)過程中,點(diǎn)E滑動(dòng)的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長(zhǎng)線上一點(diǎn),F是DC延長(zhǎng)線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)B作FG的平行線,交DA的延長(zhǎng)線于點(diǎn)N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、E在⊙O上,∠B=2∠ACE,在BA的延長(zhǎng)線上有一點(diǎn)P,使得∠P=∠BAC,弦CE交AB于點(diǎn)F,連接AE.
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=,求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新的藥物,據(jù)監(jiān)測(cè),如果成年人按規(guī)定的劑量服用,服藥后2小時(shí),每毫升血液中的含藥量達(dá)到最大值,之后每毫升血液中的含藥量逐漸衰減.若一次服藥后每毫升血液中的含藥量y(單位:微克)與服藥后的時(shí)間t(單位:小時(shí))之間近似滿足某種函數(shù)關(guān)系,下表是y與t的幾組對(duì)應(yīng)值,其部分圖象如圖所示.
t | 0 | 1 | 2 | 3 | 4 | 6 | 8 | 10 | … |
y | 0 | 2 | 4 | 2.83 | 2 | 1 | 0.5 | 0.25 | … |
(1)在所給平面直角坐標(biāo)系中,繼續(xù)描出上表中已列出數(shù)值所對(duì)應(yīng)的點(diǎn)(t,y),并補(bǔ)全該函數(shù)的圖象;
(2)結(jié)合函數(shù)圖象,解決下列問題:
①某病人第一次服藥后5小時(shí),每毫升血液中的含藥量約為_______微克;若每毫升血液中含藥量不少于0.5微克時(shí)治療疾病有效,則第一次服藥后治療該疾病有效的時(shí)間共持續(xù)約_______小時(shí);
②若某病人第一次服藥后8小時(shí)進(jìn)行第二次服藥,第二次服藥對(duì)血液中含藥量的影響與第一次服藥相同,則第二次服藥后2小時(shí),每毫升血液中的含藥量約為_______微克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x﹣m)2+2(x﹣m)(m為常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個(gè)不同的公共點(diǎn);
(2)當(dāng)m取什么值時(shí),該函數(shù)的圖象關(guān)于y軸對(duì)稱?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com