【題目】如圖,△ABC中,CD是邊AB上的高,且=

(1)求證:△ACD∽△CBD
(2)求∠ACB的大小

【答案】
(1)

證明:∵CD是邊AB上的高,

∴∠ADC=∠CDB=90°,

=

∴△ACD∽△CBD


(2)

解:∵△ACD∽△CBD,

∴∠A=∠BCD,

在△ACD中,∠ADC=90°,

∴∠A+∠ACD=90°,

∴∠BCD+∠ACD=90°,

即∠ACB=90°.


【解析】(1)由兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;
(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.
【考點精析】根據(jù)題目的已知條件,利用相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題
如圖1,等邊△ABC中,BC=4,點P從點B出發(fā),沿BC方向運動到點C,點P關(guān)于直線AB、AC的對稱點分別為點M、N,連接MN.

(1)【發(fā)現(xiàn)】
當(dāng)點P與點B重合時,線段MN的長是
當(dāng)AP的長最小時,線段MN的長是
(2)【探究】
如圖2,設(shè)PB=x,MN2=y,連接PM、PN,分別交AB,AC于點D,E.
用含x的代數(shù)式表示PM= , PN=;
(3)求y關(guān)于x的函數(shù)關(guān)系式,并寫出y的取值范圍;
(4)當(dāng)點P在直線BC上的什么位置時,線段MN=3 (直接寫出答案)
(5)【拓展】
如圖3,求線段MN的中點K經(jīng)過的路線長.

(6)【應(yīng)用】
如圖4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,點P、Q、R分別為邊BC、AB、AC上(均不與端點重合)的動點,則△PQR周長的最小值是
(可能用到的數(shù)值:sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線 y=﹣ x2平移后過點A(8,0)和原點,頂點為B,對稱軸與x軸相交于點C,與原拋物線相交于點D.

(1)求平移后拋物線的解析式及點D的坐標;
(2)直接寫出陰影部分的面積 S陰影;
(3)如圖(2),直線AB與y軸相交于點P,點M為線段OA上一動點(點M不與點A,O重合 ),∠PMN為直角,MN與AP相交于點N,設(shè)OM=t,試探究:t為何值時,△MAN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算:(﹣2)2+(﹣3)0﹣(2
(2)解方程:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應(yīng)點,點D′為點D的對應(yīng)點,連接EB′,F(xiàn)D′相交于點O.

(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是
(2)當(dāng)圖③中的∠BCD=120°時,∠AEB′=
(3)當(dāng)圖②中的四邊形AECF為菱形時,對應(yīng)圖③中的“完美箏形”有  個(包含四邊形ABCD).
(4)拓展提升:當(dāng)圖③中的∠BCD=90°時,連接AB′,請?zhí)角蟆螦B′E的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個有進水管與出水管的容器,從某時刻開始4min內(nèi)只進水不出水,在隨后的8min內(nèi)既進水又出水,每分的進水量和出水量有兩個常數(shù),容器內(nèi)的水量y(單位:L)與時間x(單位:min)之間的關(guān)系如圖所示.

(1)當(dāng)4≤x≤12時,求y關(guān)于x的函數(shù)解析式;
(2)直接寫出每分進水,出水各多少升.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

(1)求拋物線的解析式;
(2)問:當(dāng)t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當(dāng)EF∥PQ時,求點F的坐標.
(4)設(shè)拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O(shè),B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案