【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:今有勾五步,股十二步,問勾中容方幾何?其意思為今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?該問題的答案是________步.

【答案】

【解析】

如圖1,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論;如圖2,同理可得正方形的邊長,比較可得最大值.

解:如圖1,

∵四邊形CDEF是正方形,

∴CD=ED,DE∥CF,

設(shè)ED=x,則CD=x,AD=12-x,

∵DE∥CF,

∴∠ADE=∠C,∠AED=∠B,

∴△ADE∽△ACB,

,

x=

如圖2,四邊形DGFE是正方形,

過C作CP⊥AB于P,交DG于Q,

設(shè)ED=x,

S△ABC=ACBC=ABCP,

12×5=13CP,

CP=,

同理得:△CDG∽△CAB,

,

,

x=,

∴該直角三角形能容納的正方形邊長最大是(步),

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在平面直角坐標(biāo)系中有不重合的兩點(diǎn)和點(diǎn),小明在學(xué)習(xí)中發(fā)現(xiàn),若,則軸,且線段的長度為;若,則軸,且線段的長度為;

(應(yīng)用):

1)若點(diǎn),則軸,的長度為__________

2)若點(diǎn),且軸,且,則點(diǎn)的坐標(biāo)為__________

(拓展):

我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn),之間的折線距離為;例如:圖1中,點(diǎn)與點(diǎn)之間的折線距離為

解決下列問題:

1)如圖1,已知,若,則__________;

2)如圖2,已知,若,則__________

3)如圖3,已知的,點(diǎn)軸上,且三角形的面積為3,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn),將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對(duì)角線上的點(diǎn)處,折痕與軸交于點(diǎn).

1)線段的長度為__________

2)求直線所對(duì)應(yīng)的函數(shù)解析式;

3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:

①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;&

②點(diǎn)O與O′的距離為4;

③∠AOB=150°;

④四邊形AOBO′的面積為6+3

⑤S△AOC+S△AOB=6+.

其中正確的結(jié)論是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李是某服裝廠的一名工人,負(fù)責(zé)加工A,B兩種型號(hào)服裝,他每月的工作時(shí)間為22天,月收入由底薪和計(jì)件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時(shí)間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達(dá)到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點(diǎn).

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=1,∠B=30°,且AC邊在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置可得到點(diǎn)P1,此時(shí);將位置的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置,可得到點(diǎn)P2,此時(shí);將位置的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置,可得到點(diǎn)P3,此時(shí);……,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3過點(diǎn)A(-1,0),B(3,0),點(diǎn)M,N為拋物線上的動(dòng)點(diǎn),過點(diǎn)MMD∥y軸,交直線BC于點(diǎn)D,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)過點(diǎn)NNF⊥x軸,垂足為點(diǎn)F,若四邊形MNFE為正方形(此處限定點(diǎn)M在對(duì)稱軸的右側(cè)),求該正方形的面積;

(3)若∠DMN=90°,MD=MN,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知xy

1)求x2+xy+y2

2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

同步練習(xí)冊(cè)答案