【題目】已知二次函數(shù)yax2+bx+cab,c是常數(shù),a≠0)圖象的對稱軸是直線x1,其圖象的一部分如圖所示,下列說法中①abc0;②2a+b0;③當(dāng)﹣1x3時,y0;④2c3b0.正確的結(jié)論有( 。

A. ①②B. ②③④C. ①③D. ①②④

【答案】D

【解析】

由拋物線的開口方向判斷a,由拋物線與y軸的交點(diǎn)判斷c,根據(jù)對稱軸的位置判斷ba、b關(guān)系,根據(jù)拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷

拋物線開口向下,則a0.對稱軸在y軸右側(cè),a、b異號,則b0.拋物線與y軸交于正半軸,則c0,所以abc0,故①正確;

拋物線的對稱軸是直線x1,則,b=﹣2a,所以2a+b0,故②正確;

由圖象可知,拋物線與x軸的左交點(diǎn)位于0和﹣1之間,在兩個交點(diǎn)之間時,y0,在x=﹣1時,y0,故③錯誤;

當(dāng)x=﹣1時,有yab+c0,由2a+b0,得,代入得,兩邊乘以22c3b0,故④正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠CAB=60°,AC=1,RtABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°后得到RtADE, 點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB6,∠DAB60°AE分別交BCBD于點(diǎn)E,F,CE2,連接CF.給出以下結(jié)論:①△ABF≌△CBF;②點(diǎn)EAB的距離是3;③tanDCF;④△ABF的面積為.其中正確的結(jié)論序號是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個學(xué)生都必須報(bào)名且只能選擇其中一個項(xiàng)目.八年級(3)班班主任劉老師對全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問題:

(1)八年級(3)班學(xué)生總?cè)藬?shù)是   ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)劉老師發(fā)現(xiàn)報(bào)名參加植物識別的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動記錄員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+ax3x軸于點(diǎn)AD兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)A的直線與x軸下方的拋物線交于點(diǎn)B,已知點(diǎn)A的坐標(biāo)是(﹣1,0).

1)求a的值;

2)連結(jié)BD,求ADB面積的最大值;

3)當(dāng)ADB面積最大時,求點(diǎn)C到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解

我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系.如果兩條數(shù)軸不垂直,而是相交成任意的角ωω180°ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系.如圖1,經(jīng)過平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PMPNx軸和y軸于MN,點(diǎn)MNx軸和y軸上所對應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo).

如圖2,ω=30°,直角三角形的頂點(diǎn)A在坐標(biāo)原點(diǎn)O,點(diǎn)BC分別在x軸和y軸上,AB=,則點(diǎn)B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為B C

2)嘗試應(yīng)用

如圖3,ω=45°,O為坐標(biāo)原點(diǎn),邊長為1的正方形OABC一邊OAx軸上,設(shè)點(diǎn)Gx,y)在經(jīng)過A、C兩點(diǎn)的直線上,求yx之間滿足的關(guān)系式.

3)深入探究

如圖4,ω=60°,O為坐標(biāo)原點(diǎn),M2,2),圓M的半徑為.有一個內(nèi)角為60°的菱形,菱形的一邊在x軸上,另有兩邊所在直線恰好與圓M相切,求此菱形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A1cm/s的速度移動:同時點(diǎn)Q沿邊ABBC從點(diǎn)A開始向點(diǎn)Cacm/s的速度移動,當(dāng)點(diǎn)P移動到點(diǎn)A時,P,Q同時停止移動.設(shè)點(diǎn)P出發(fā)x秒時,△PAQ的面積為ycm2,yx的函數(shù)圖象如圖,線段EF所在的直線對應(yīng)的函數(shù)關(guān)系式為y=﹣4x+21,則a的值為( 。

A. 1.5B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案