【題目】李珊一家準(zhǔn)備假期游覽華山(H)、秦始皇兵馬俑(T)、大雁塔(G)三個(gè)景區(qū),他用摸牌的方式確定游覽順序:如圖,將代表三個(gè)景區(qū)的圖片貼在背面完全相同的三張卡片上,將三張卡片背面向上洗勻后摸出一張(不再放回)作為最先游覽的景區(qū),再從剩下的兩張卡片中摸出一張,作為游覽的第二個(gè)景區(qū),余下的一張代表最后游覽的景區(qū),比如:他先摸出T,再摸出G,則表示游覽順序?yàn)椤?/span>TGH”,即“秦始皇兵馬俑﹣大雁塔﹣華山”.

1)求李珊一家最先游覽的景區(qū)是大雁塔的概率;

2)請(qǐng)用畫樹狀圖或列表的方法表示出所有可能的游覽順序,并求出李珊一家恰好按:“大雁塔﹣華山﹣秦始皇兵馬俑”順序游覽的概率.

【答案】(1);(2).

【解析】

1)列舉出符合題意的各種情況的個(gè)數(shù),再根據(jù)概率公式解答即可.

2)列舉出符合題意的各種情況的個(gè)數(shù),再根據(jù)概率公式解答即可.

解:(1)李珊一家最先游覽的景區(qū)是大雁塔的概率是

2)樹狀圖:

共有6種可能,其中符合條件的只有一種,

P(李珊一家恰好按:大雁塔﹣華山﹣秦始皇兵馬俑)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB,AGCH3,BGDH2,則H、G兩點(diǎn)之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,EAD邊上的一個(gè)動(dòng)點(diǎn),將四邊形BCDE沿直線BE折疊,得到四邊形BCDE,連接AC,AD′.

1)若直線DABC于點(diǎn)F,求證:EF=BF;

2)當(dāng)AE=時(shí),求證:△ACD是等腰三角形;

3)在點(diǎn)E的運(yùn)動(dòng)過程中,求△ACD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( 。

A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. 當(dāng)k>0時(shí),yx的增大而減小

C. 過圖象上任一點(diǎn)Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠CAB=60°,AC=1,RtABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到RtADE, 點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接五一勞動(dòng)節(jié)某中學(xué)組織了甲、乙兩個(gè)義務(wù)勞動(dòng)小組,甲組x乙組y,中華路青年路打掃衛(wèi)生,根據(jù)打掃衛(wèi)生的進(jìn)度,學(xué)校隨時(shí)調(diào)整兩組人數(shù),如果從甲組調(diào)50人去乙組,則乙組人數(shù)為甲組人數(shù)的2倍;如果從乙組調(diào)m人去甲組,則甲組人數(shù)為乙組人數(shù)的3

(1)求出xm之間的函數(shù)表達(dá)式

(2)問:當(dāng)m為何值時(shí),甲組人數(shù)最少,最少是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)的圖象過點(diǎn)(1,0),其對(duì)稱軸為,下列結(jié)論:①;②;③;④此二次函數(shù)的最大值是,其中結(jié)論正確的是(

A. ①②B. ②③C. ②④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師從淋浴龍頭受到啟發(fā),編了一個(gè)題目:在數(shù)軸上截取從03的對(duì)應(yīng)線段AB,實(shí)數(shù)m對(duì)應(yīng)AB上的點(diǎn)M,如圖1;將AB折成正三角形,使點(diǎn)A,B重合于點(diǎn)P,如圖2;建立平面直角坐標(biāo)系,平移此三角形,使它關(guān)于y軸對(duì)稱,且點(diǎn)P的坐標(biāo)為(0,2),PMx軸交于點(diǎn)Nn0),如圖3.當(dāng)m時(shí),n_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+ax3x軸于點(diǎn)A,D兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)A的直線與x軸下方的拋物線交于點(diǎn)B,已知點(diǎn)A的坐標(biāo)是(﹣10).

1)求a的值;

2)連結(jié)BD,求ADB面積的最大值;

3)當(dāng)ADB面積最大時(shí),求點(diǎn)C到直線AB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案