【題目】如圖1,已知線段AB=16cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D、E分別是AC和BC的中點(diǎn).

(1)若點(diǎn)C恰為AB的中點(diǎn),求DE的長(zhǎng);

(2)若AC=6cm,求DE的長(zhǎng);

(3)試說明不論AC取何值(不超過16cm),DE的長(zhǎng)不變;

(4)知識(shí)遷移:如圖2,已知AOB=130°,過角的內(nèi)部任一點(diǎn)C畫射線OC,若OD、OE分別平分AOCBOC,試說明DOE=65°與射線OC的位置無關(guān).

【答案】(1)8cm(2)8cm;(3)不論AC取何值(不超過16cm),DE的長(zhǎng)不變;(4)DOE=65°與射線OC的位置無關(guān).

【解析】

試題分析:(1)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長(zhǎng),根據(jù)線段中點(diǎn)的定義計(jì)算即可;

(2)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長(zhǎng),根據(jù)線段中點(diǎn)的定義計(jì)算即可;

(3)根據(jù)中點(diǎn)的性質(zhì)求出AC、BC的長(zhǎng),根據(jù)線段中點(diǎn)的定義計(jì)算即可說明結(jié)論;

(4)根據(jù)角平分線的定義得到DOC=AOC,EOC=BOC,結(jié)合圖形計(jì)算即可.

解:(1)點(diǎn)C恰為AB的中點(diǎn),

AC=BC=AB=8cm,

點(diǎn)D、E分別是AC和BC的中點(diǎn),

DC=AC=4cm,CE=BC=4cm,

DE=8cm

(2)AB=16cm,AC=6cm,

BC=10cm,

由(1)得,DC=AC=3cm,CE=CB=5cm,

DE=8cm;

(3)點(diǎn)D、E分別是AC和BC的中點(diǎn),

DC=AC,CE=BC,

DE=(AC+BC)=AB,

不論AC取何值(不超過16cm),DE的長(zhǎng)不變;

(4)OD、OE分別平分AOCBOC

∴∠DOC=AOC,EOC=BOC,

∴∠DOE=DOC+EOC=AOC+BOC)=AOB=65°,

∴∠DOE=65°與射線OC的位置無關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一個(gè)長(zhǎng)為4a,寬為2b的長(zhǎng)方形,沿圖中虛線均分成4個(gè)長(zhǎng)方形,然后按圖2形狀拼成一個(gè)正方形

(1)2中陰影部分的邊長(zhǎng)是   (用含a、b的式子表示);

(2)2a+b=7,ab=3,求圖2中陰影部分的面積;

(3)觀察圖2,用等式表示出(2ab2,ab,(2a+b2的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愛好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當(dāng)tan∠PAB=1,c=4 時(shí),a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= , b=;

(2)【歸納證明】
請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.

(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3 ,AB=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度, 的三個(gè)頂點(diǎn)的坐標(biāo)分別
(1)畫出 關(guān)于 軸的對(duì)稱圖形
(2)畫出將 繞原點(diǎn) 逆時(shí)針方向旋轉(zhuǎn) 得到的 ;
(3)求(2)中線段 掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點(diǎn) D,E 分別在邊 AC,AB 上,BD CE 交于點(diǎn) O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC 是等腰三角形?(用序號(hào)寫出所有成立的情形)

(2)請(qǐng)選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班在一次班會(huì)課上,就遇見路人摔倒后如何處理的主題進(jìn)行討論,并對(duì)全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數(shù)

m

30

n

5

請(qǐng)根據(jù)表圖所提供的信息回答下列問題:

(1)統(tǒng)計(jì)表中的 m= ,n= ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若該校有 2000 名學(xué)生,請(qǐng)據(jù)此估計(jì)該校學(xué)生采取馬上救助方式的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生帶手機(jī)上學(xué)的現(xiàn)象越來越受到社會(huì)的關(guān)注,為此,某記者隨機(jī)調(diào)查了某城區(qū)若干名學(xué)生家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:基本贊成;C:贊成;D:反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線圖1和統(tǒng)計(jì)圖2(不完整)。請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣檢查中,共調(diào)查了  名學(xué)生家長(zhǎng);

2)將圖1補(bǔ)充完整;

3)根據(jù)抽樣檢查的結(jié)果,請(qǐng)你估計(jì)該市城區(qū)6000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PDAB,PEBC,PFAC,若ABC的周長(zhǎng)為18,則PD+PE+PF=(  )

A. 18B. 9

C. 6D. 條件不夠,不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案