【題目】定安縣定安中學初中部三名學生競選校學生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進行統(tǒng)計,如表和圖.

A

B

C

筆試

85

95

90

口試

   

80

85

1)請將表和圖中的空缺部分補充完整;

2)圖中B同學對應的扇形圓心角為   度;

3)競選的最后一個程序是由初中部的300名學生進行投票,三名候選人的得票情況如圖(沒有棄權票,每名學生只能推薦一人),則A同學得票數(shù)為   ,B同學得票數(shù)為   ,C同學得票數(shù)為   ;

4)若每票計1分,學校將筆試、演講、得票三項得分按433的比例確定個人成績,請計算三名候選人的最終成績,并根據(jù)成績判斷   當選.(從A、B、C、選擇一個填空)

【答案】190;(2144度;(3105,12075;(4B

【解析】

1)由條形圖可得A演講得分,由表格可得C筆試得分,據(jù)此補全圖形即可;

2)用360°乘以B對應的百分比可得答案;

3)用總人數(shù)乘以A、B、C三人對應的百分比可得答案;

4)根據(jù)加權平均數(shù)的定義計算可得.

解:(1)由條形圖知,A演講得分為90分,

補全圖形如下:

故答案為90;

2)扇圖中B同學對應的扇形圓心角為360°×40%144°

故答案為144;

3A同學得票數(shù)為300×35%105,B同學得票數(shù)為300×40%120C同學得票數(shù)為300×25%75,

故答案為105120、75;

4A的最終得分為92.5(分),

B的最終得分為98(分),

C的最終得分為84(分),

B最終當選,

故答案為B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.

1)求每張門票原定的票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作發(fā)現(xiàn))

如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,ABC的三個頂點均在格點上.

1)請按要求畫圖:將ABC繞點A按順時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′

2)在(1)所畫圖形中,∠AB′B=____

(問題解決)

3)如圖②,在等邊三角形ABC中,AC=7,點PABC內,且∠APC=90°,∠BPC=120°,求APC的面積.

小明同學通過觀察、分析、思考,對上述問題形成了如下想法:

想法一:將APC繞點A按順時針方向旋轉60°,得到AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系;

想法二:將APB繞點A按逆時針方向旋轉60°,得到AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關系.

請參考小明同學的想法,完成該問題的解答過程.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠B30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN,再分別以MN為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP,并廷長交BC于點D,則下列說法中正確的個數(shù)是( 。

AD是∠BAC的平分線

ADC60°

DAB的垂直平分線上

AD2dm,則點DAB的距離是1dm

SDACSDAB12

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是平行四邊形ABCD的對角線,DEAB于點E,過點E的直線交BC于點G,且BGCG

1)求證:GDEG

2)若BDEG垂足為O,BO2,DO4,畫出圖形并求出四邊形ABCD的面積.

3)在(2)的條件下,以O為旋轉中心順時針旋轉△GDO,得到△GD'O,點G′落在BC上時,請直接寫出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx3x軸于點A(﹣1,0)和點B3,0),與y軸交于點C,頂點是D,對稱軸交x軸于點E

1)求拋物線的解析式;

2)點P是拋物線在第四象限內的一點,過點PPQy軸,交直線AC于點Q,設點P的橫坐標是m

①求線段PQ的長度n關于m的函數(shù)關系式;

②連接APCP,求當ACP面積為時點P的坐標;

3)若點N是拋物線對稱軸上一點,則拋物線上是否存在點M,使得以點B,C,MN為頂點的四邊形是平行四邊形?若存在,請直接寫出線段BN的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3,OA=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點P和點Q分別從點B和點C出發(fā),沿射線BC向右運動,且速度相同,過點QQHBD,垂足為H,連接PH,設點P運動的距離為x0x≤2),BPH的面積為S,則能反映Sx之間的函數(shù)關系的圖象大致為( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ABC90°,BD為∠ABC的角平分線,FAC的中點,AEBCBD的延長線于點E,其中∠FBC2FBD

1)求∠EDC的度數(shù).

2)求證:BFAE

查看答案和解析>>

同步練習冊答案