【題目】如圖,已知等邊△ABC中,點DBC邊的延長線上,CE平分∠ACD,且CE=BD.判斷△ADE的形狀,并說明理由。

【答案】ADE是等邊三角形,理由見解析

【解析】

先證明出ABD≌△ACE,然后進一步得出AD=AE,∠BAD=CAE,加上∠DAE=60°,即可證明ADE為等邊三角形.

ADE是等邊三角形,理由如下:

ABC是等邊三角形,

∴∠ACB=B=60°,AB=AC

∴∠ACD=120°,

CE平分∠ACD,

∴∠ACE=DCE=60°,

ABDACE中,

AB=AC,∠B=ACEBD=CE,

∴△ABD≌△ACE(SAS),

AD=AE,∠BAD=CAE

∴∠BAC+CAD=CAD+DAE

又∵∠BAC=60°,

∴∠DAE=60°,

∴△ADE為等邊三角形。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點邊上,點的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時的長為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內(nèi)的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當點P的圖象上運動時,以下結(jié)論:

的值不會發(fā)生變化

PAPB始終相等

④當點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCDAM平分∠BAP,CM平分∠PCD

1)如圖①,當點PM在直線AC同側(cè),∠AMC60°時,求∠APC的度數(shù);

2)如圖②,當點PM在直線AC異側(cè)時,直接寫出∠APC與∠AMC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AB=1,BC=2,∠B=45°,MAB的中點.

(1)求tan∠CMD的值;

(2)設(shè)NCD中點,CMBNK,求SBKC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的角平分線,;垂足為的延長線于點,若恰好平分.給出下列三個結(jié)論:①;②;③.其中正確的結(jié)論共有( )個

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.

1)甲、乙兩個工程隊單獨完成此項工程各需多少天?

2)若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設(shè)計一種方案,既能按時完工,又能使工程費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,AD是∠BAC的角平分線,若AB=AC+CD.那么∠ACB 與∠ABC有怎樣的數(shù)量關(guān)系? 小明通過觀察分析,形成了如下解題思路:

如圖2,延長ACE,使CE=CD,連接DE,AB=AC+CD,可得AE=AB,又因為AD是∠BAC的平分線,可得ABD≌△AED,進一步分析就可以得到∠ACB 與∠ABC的數(shù)量關(guān)系.

(1) 判定ABD AED 全等的依據(jù)是______________(SSS,SAS,ASA,AAS 從其中選擇一個);

(2)ACB 與∠ABC的數(shù)量關(guān)系為:___________________

查看答案和解析>>

同步練習冊答案