【題目】如圖,在△ACE中,AC=CE,⊙O經(jīng)過點A,C,且與邊AE,CE分別交于點D,F,點B是劣弧AC上的一點,且,連接AB,BC,CD.
(1)求證:△CDE≌△ABC;
(2)填空:若AC為⊙O的直徑,則當△ACE的形狀為 時,四邊形ABCD為正方形.
【答案】(1)證明見解析;(2)等腰直角三角形
【解析】
(1)先判斷出∠BAC=∠DCE,進而得出∠CDE=∠ABC,即可得出結(jié)論;
(2)先判斷出AD=CD,∠ADC=90°,進而得出∠ACD=45°,再判斷出∠DCE=∠ACD=45°,即可得出∠ACE=90°,即可得出結(jié)論
(1)∵,
∴∠BAC=∠DCE,
∵∠CDE是圓內(nèi)接四邊形ABCD的外角,
∴∠CDE=∠ABC,
在△CDE和△ABC中,
,
∴△CDE≌△ABC(AAS);
(2)∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ACD=45°,
∵AC=CE,CD⊥AE,
∴∠DCE=∠ACD=45°,
∴∠ACE=90°,
∵AC=CE,
∴△ACE是等腰直角三角形.
故答案為:等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】動點A(m+2,3m+4)在直線l上,點B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點,則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸與x軸交于點D,若點P為y軸上的一個動點,連接PD,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的,兩點,與軸交于點,過點作軸,垂足為點,,,點的縱坐標為.
(1)求點的坐標;
(2)求該反比例函數(shù)和一次函數(shù)的解析式;
(3)連接,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是我國古代數(shù)學家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應了(a+b)n(n為非負整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應圖中第四行的數(shù)字.請認真觀察此圖,寫出(a﹣b)4的展開式,(a﹣b)4=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com