【題目】設(shè)m是不小于﹣1的實(shí)數(shù),使得關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)若x12+x22=2,求m的值;
(2)代數(shù)式 + 有無(wú)最大值?若有,請(qǐng)求出最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

【答案】
(1)解:根據(jù)題意得△=4(m﹣2)2﹣4(m2﹣3m+3)≥0,解得m≤1,

∵m是不小于﹣1的實(shí)數(shù)

∴﹣1≤m≤1,

x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,

∵x12+x22=2,

∴(x1+x22﹣2x1x2=2,

∴4(m﹣2)2﹣2(m2﹣3m+3)=2,

整理得m2﹣5m+4=0,解得m1=1,m2=4(舍去),

∴m的值為1


(2)解:代數(shù)式有最大值.理由如下:

+ =m =m =m =﹣2m+2,

∴﹣1≤m≤1且m≠0,m≠1,

∴當(dāng)m=﹣1時(shí),代數(shù)式的值最大,最大值為4


【解析】(1)根據(jù)方程有兩個(gè)實(shí)數(shù)根知△=4(m﹣2)2﹣4(m2﹣3m+3)≥0,解得m≤1,又m是不小于﹣1的實(shí)數(shù),從而得出m的取值范圍﹣1≤m≤1,將方程x12+x22=2變形為(x1+x22﹣2x1x2=2,根據(jù)根與系數(shù)之間的關(guān)系得x1+x2=-2(m﹣2),x1x2=m2﹣3m+3,整體代入得出一個(gè)關(guān)于m的方程求解得出解得m1=1,m2=4(舍去),從而得出m的值;
(2)代數(shù)式有最大值.理由如下:將代數(shù)式通分合并,整體代入化簡(jiǎn)得出原式=﹣2m+2,又﹣1≤m≤1且m≠0,m≠1,故當(dāng)m=﹣1時(shí),代數(shù)式的值最大,最大值為4
【考點(diǎn)精析】認(rèn)真審題,首先需要了解因式分解法(已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì)),還要掌握求根公式(根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下面的方法折紙,然后回答問(wèn)題:

11與∠AEC有何關(guān)系?

21,3有何關(guān)系?

32是多少度的角?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡)

(2)連接DE,求證:△ADE≌△BDE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在矩形ABCD中,E是BC上一點(diǎn),AF⊥DE于點(diǎn)F.

(1)求證:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)下面是李老師帶領(lǐng)同學(xué)們探索的近似值的過(guò)程,請(qǐng)你仔細(xì)閱讀并補(bǔ)充完整:我們知道,面積是2的正方形的邊長(zhǎng)是,且>1,則設(shè)=1+x(0<x<1),可畫出如圖所示的示意圖.由各部分面積之和等于總面積.可列方程為:x2+   +1=2,∵0<x<1,∴認(rèn)為x2是個(gè)較為接近于0的數(shù),令x2≈0,因此省略x2后,得到方程:   ,解得,x   ,即=1+x   

(2)請(qǐng)仿照(1)中的方法,若設(shè)=1.7+y(0<y<1),求的近似值(要求畫出示意圖,標(biāo)明數(shù)據(jù),并將的近似值精確到千分位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)A出發(fā),沿AB方向勻速運(yùn)動(dòng),速度為1cm/s;過(guò)點(diǎn)P作直線PF∥AD,PF交CD于點(diǎn)F,過(guò)點(diǎn)F作EF⊥BD,且與AD、BD分別交于點(diǎn)E、Q;連接PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s)(0<t<10).
解答下列問(wèn)題:
(1)填空:AB= cm;
(2)當(dāng)t為何值時(shí),PE∥BD;
(3)設(shè)四邊形APFE的面積為y(cm2
①求y與t之間的函數(shù)關(guān)系式;
②若用S表示圖形的面積,則是否存在某一時(shí)刻t,使得S四邊形APFE= S菱形ABCD?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的線段AB及點(diǎn)P,給出如下定義:

若點(diǎn)P滿足PA=PB,則稱P為線段AB的“軸點(diǎn)”,其中,當(dāng)0°<∠APB<60°時(shí),稱P為線段AB的“遠(yuǎn)軸點(diǎn)”;當(dāng)60°≤∠APB≤180°時(shí),稱P為線段AB的“近軸點(diǎn)”.

(1)如圖1,點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),則在,,, 中,線段AB的“近軸點(diǎn)”是 .

(2)如圖2,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)By軸正半軸上,且∠OAB=30°.

①若P為線段AB的“遠(yuǎn)軸點(diǎn)”,直接寫出點(diǎn)P的橫坐標(biāo)t的取值范圍

②點(diǎn)Cy軸上的動(dòng)點(diǎn)(不與點(diǎn)B重合且BCAB),若Q為線段AB的“軸點(diǎn)”,當(dāng)線段QBQC的和最小時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______;

2個(gè):(ab)(a2+ab+b2)______

3個(gè):(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,BE平分∠ABCDE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案