如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應(yīng)邊平行,則外框與原圖一定相似的有( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)相似多邊形的判定定理對各個選項進(jìn)行分析,從而確定最后答案.
解答:解:矩形不相似,因為其對應(yīng)角的度數(shù)一定相同,但對應(yīng)邊的比值不一定相等,不符合相似的條件;
銳角三角形、直角三角形的原圖與外框相似,因為其三個角均相等,三條邊均對應(yīng)成比例,符合相似的條件;
正五邊形相似,因為它們的邊長都對應(yīng)成比例、對應(yīng)角都相等,符合相似的條件.
故選C.
點評:邊數(shù)相同、各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形是相似多邊形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個頂點為頂點作矩形,第三個頂點落在以這兩個頂點所確定的對邊上,這樣可以作三個面積相等的矩形,請問這三個矩形的周長大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長)答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀材料,解決問題.
小聰在探索三角形中位線性質(zhì)定理證明的過程中,得到了如下啟示:一條線段經(jīng)過另一線段的中點,則延長前者,并且長度相等,就能構(gòu)造全等三角形.如圖,D是△ABC的AC邊的中點,E為AB上任一點,延長ED至F,使DF=DE,連接CF,則可得△CFD≌△AED,從而把△ABC剪拼成面積相等的四邊形BCFE.你能從小聰?shù)姆此贾械玫絾⑹締幔?br />(1)如圖1,已知△ABC,試著剪一刀,使得到的兩塊圖形能拼成平行四邊形.
①把剪切線和拼成的平行四邊形畫在圖1上,并指出剪切線應(yīng)符合的條件.
②思考并回答:要使上述剪拼得到的平行四邊形成為矩形,△ABC的邊或角應(yīng)符合什么條件?菱形呢?正方形呢?(直接寫出用符號表示的條件)
(2)如圖2,已知銳角△ABC,試著剪兩刀,使得到的三塊圖形能拼成矩形,把剪切線和拼成的矩形畫在圖2上,并指出剪切線應(yīng)符合的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

22、認(rèn)真閱讀下列問題,并加以解決:
問題1:如圖1,△ABC是直角三角形,∠C=90°.現(xiàn)將△ABC補(bǔ)成一個矩形.要求:使△ABC的兩個頂點成為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上.請將符合條件的所有矩形在圖1中畫出來;
問題2:如圖2,△ABC是銳角三角形,且滿足BC>AC>AB,按問題1中的要求把它補(bǔ)成矩形.請問符合 要求的矩形最多可以畫出
3
個,并猜想它們面積之間的數(shù)量關(guān)系是
相等
(填寫“相等”或“不相等”);
問題3:如果△ABC是鈍角三角形,且三邊仍然滿足BC>AC>AB,現(xiàn)將它補(bǔ)成矩形.要求:△ABC有兩個頂點成為矩形的兩個頂點,第三個頂點落在矩形的一邊上,那么這幾個矩形面積之間的數(shù)量關(guān)系是
不相等
(填寫“相等”或“不相等”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,△ABC是直角三角形,將△ABC補(bǔ)成矩形,使△ABC的兩個頂點為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上.那么符合條件的矩形可以畫2個(即矩形ABCD和矩形AEFB)

(1)設(shè)圖1中矩形ABCD和矩形AEFB的面積為S1和S2,則S1
=
=
S2;
(2)如圖2,△ABC為銳角三角形(BC>AC>AB),按文中要求把它補(bǔ)成矩形.
①請畫出盡可能多符合條件的矩形;
②這些矩形面積是否相等?如果不相等,哪個矩形的面積最大?
③這些矩形周長是否相等?如果不相等,哪個矩形的周長最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市考數(shù)學(xué)一模試卷 題型:解答題

認(rèn)真閱讀下列問題,并加以解決:

問題1:如圖1,△ABC是直角三角形,∠C =90º.現(xiàn)將△ABC補(bǔ)成一個矩形.要求:使△ABC的兩個頂點成為矩形一邊的兩個端點,第三個頂點落在矩形這一邊的對邊上.請將符合條件的所有矩形在圖1中畫出來;

             

圖1                                  圖2 

問題2:如圖2,△ABC是銳角三角形,且滿足BC>AC>AB,按問題1中的要求把它補(bǔ)成矩形.請問符合要求的矩形最多可以畫出      個,并猜想它們面積之間的數(shù)量關(guān)系是           (填寫“相等”或“不相等”);

問題3:如果△ABC是鈍角三角形,且三邊仍然滿足BC>AC>AB,現(xiàn)將它補(bǔ)成矩形.要求:△ABC有兩個頂點成為矩形的兩個頂點,第三個頂點落在矩形的一邊上,那么這幾個矩形面積之間的數(shù)量關(guān)系是           (填寫“相等”或“不相等”).

 

查看答案和解析>>

同步練習(xí)冊答案