【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC,點D、E分別在邊AB、CB上,CD=DE,∠CDB=∠DEC,過點C作CF⊥DE于點F,交AB于點G,
(1)求證:△ACD≌△BDE;
(2)求證:△CDG為等腰三角形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)題意和圖形,利用全等三角形的判定可以證明結(jié)論成立;
(2)根據(jù)題意和(1)中的結(jié)論,利用全等三角形的性質(zhì)和等腰三角形的判定可以證明結(jié)論成立.
解:(1)∵∠CDB=∠DEC,
∴∠ADC=∠BED,
∵AC=BC,
∴∠A=∠B,
在△ACD與△BDE中,
,
∴△ACD≌△BDE(AAS);
(2)由(1)知,△ACD≌△BDE,
∴∠ACD=∠BDE,
∵在Rt△ACB中,AC=BC,
∴∠A=∠B=45°,
∴∠CDG=45°+∠ACD,∠DGC=45°+∠BCG,
∴∠CDF=45°,
∵CF⊥DE交BD于點G,
∴∠DFC=90°,
∴∠DCF=45°,
∵DC=DE,
∴∠DCE=∠DEC,
∵∠DCE=∠DCF+∠BCG=45°+∠BCG,∠DEC=∠B+∠BDE=45°+∠BDE,
∴∠BCG=∠BDE,
∴∠ACD=∠BCG,
∴∠CDG=∠CGD,
∴CD=CG,
∴△CDG是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,是邊上一點(點不與點重合),連接.
(感知)如圖1,過點作交于點.易證.(不需要證明)
(探究)如圖2,取的中點,過點作交于點,交于點.
(1)求證:.
(2)連接.若,則的長為___________.
(應(yīng)用)如圖3,取的中點,連接.過點作交于點,連接.若,則四邊形的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>∠C,AD⊥BC,垂足為D,AE平分∠BAC.
(1)已知∠B=60°,∠C=30°,求∠DAE的度數(shù);
(2)已知∠B=3∠C,求證:∠DAE=∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定組織學(xué)生開展校外拓展活動,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.現(xiàn)有甲乙兩種大客車,它們的載客量和租金如下表所示.學(xué)校計劃此次拓展活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.
客車 | 甲種 | 乙種 |
載客量/(人/輛) | 30 | 42 |
租 金/(元/輛) | 300 | 400 |
(1)參加此次拓展活動的老師有 人,參加此次拓展活動的學(xué)生有 人;
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛.
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設(shè)BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點,AD與BE相交于點P,那么四邊形PDCE的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸的負半軸交于點A,與y軸交于點B,連結(jié)AB.點C 在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標為m , 求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標;
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形邊長都為1.建立適當?shù)钠矫嬷苯亲鴺讼担裹cA(3,4)、C(4,2).
(1)判斷△ABC的形狀,并求圖中格點△ABC的面積;
(2)在x軸上有一點P,使得PA+PC最小,則PA+PC的最小值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com