【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為____________.
【答案】(,)
【解析】
過點D作DE⊥y軸于E,根據(jù)矩形的性質(zhì)可得∠CBO=∠BOA=90°,OB=3,AO=BC,然后根據(jù)銳角三角函數(shù)即可求出AO和BC,再根據(jù)折疊的性質(zhì)可得BD=BC=,∠ABD=∠CBA=60°,然后利用銳角三角函數(shù)求出BE和ED,即可求出OE,從而求出點D的坐標(biāo).
解:過點D作DE⊥y軸于E
∵四邊形AOBC是矩形,點B的坐標(biāo)為(0,3),∠ABO=30°,
∴∠CBO=∠BOA=90°,OB=3,AO=BC
∴∠CBA=∠CBO-∠ABO=60°,
在Rt△BAO中,AO=OB·tan∠ABO=
∴BC=
根據(jù)折疊的性質(zhì)可知BD=BC=,∠ABD=∠CBA=60°
∴∠EBD=∠ABD-∠ABO=30°
在Rt△EBD中,DE=BD·sin∠EBD=,BE=BD·cos∠EBD=
∴OE=OB-BE=
∴點D的坐標(biāo)為(,)
故答案為:(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水城門位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢蝶島區(qū)域重要的標(biāo)志性景觀.在課外實踐活動中,某校九年級數(shù)學(xué)興趣小組決定測量該水城門的高.他們的操作方法如下:如圖,先在D處測得點A的仰角為20°,再往水城門的方向前進(jìn)13米至C處,測得點A的仰角為31°(點D、C、B在一直線上),求該水城門AB的高.(精確到0.1米)
(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,,直線與拋物線交于點,,與軸交于點.
(1)求拋物線的解析式;
(2)點是線段上的一動點(不與,重合),過點作軸的垂線,交軸于點,交拋物線于點,若,線段是否存在最大值?若存在,請求出最大值,若不存在,請說明理由;
(3)若軸上存在一點,使得時,求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形AOB中,OA=OB=4,∠AOB=120°,點C是弧AB上的一個動點(不與點A,B重合),射線AD與扇形AOB所在⊙O相切,點P在射線AD上,連接AB,OC,CP,若AP=2,則CP的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P為拋物線L:y=a(x﹣2)(x﹣4)(其中a為常數(shù),且a<0)的頂點,L與y軸交于點C,過點C作x軸的平行線,與L交于點A,過點A作x軸的垂線,與射線OP交于點B,連接OA
(1)a=﹣2時,點P的坐標(biāo)是 ,點B的坐標(biāo)是 ;
(2)是否存在a的值,使OA=OB?若存在,求出a的值;若不存在,請說明理由
(3)若△OAB的外心N的坐標(biāo)為(p,q),則
①當(dāng)點N在△OAB內(nèi)部時,求a的取值范圍;
②用a表示外心N的橫坐標(biāo)p和縱坐標(biāo)q,并求p與q的關(guān)系式(不寫q的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,直線l與x、y軸分別交于點A(2,0)、B(0,)兩點,∠BAO的角平分線交y軸于點D. 點C為直線l上一點,以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E.
(1)求出⊙G的半徑r,并直接寫出點C的坐標(biāo);
(2)如圖2,若點F為⊙G上的一點,連接AF,且滿足∠FEA=45°,請求出EF的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點,⊙O的切線MA與FB的延長線交于點M;P為AM上一點,PB的延長線交⊙O于點C,D為BC上一點且PA=PD,AD的延長線交⊙O于點E.
(1)求證:;
(2)若ED、EA的長是一元二次方程的兩根,求BE的長;
(3)若MA=,sin∠AMF=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“C運算”:①當(dāng)n為奇數(shù)時,結(jié)果為3n+1;②當(dāng)n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的正整數(shù))并且運算重復(fù)進(jìn)行,例如,n=66時,其“C運算”如下:
若n=26,則第2019次“C運算”的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com