【題目】是等邊三角形,點(diǎn)在射線上,延長(zhǎng)至,使.
(1)如圖(1),當(dāng)點(diǎn)為線段中點(diǎn)時(shí),求證:.
(2)如圖(2),當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.
【答案】(1)見解析;(2)成立,證明見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得∠ABC=∠ACB=60°,由等腰三角形“三線合一”的性質(zhì)可得∠CBD=30°,由CD=AD,CD=CE可得CD=CE,即可得∠CDE=∠CED,利用三角形外角性質(zhì)可得∠CED=30°,可得∠CBD=∠CED,即可證明DB=DE;
(2)如圖,過點(diǎn)作的平行線交于,根據(jù)平行線的性質(zhì)及等邊三角形的性質(zhì)可證明△CDF是等邊三角形,可得CD=DF=CF,利用線段的和差關(guān)系可得BC=AC=EF,利用平角的定義可得=120°,利用SAS可證明,即可得DB=DE.
(1)∵是等邊三角形
∴
∵點(diǎn)為線段的中點(diǎn),
∴平分,
∴
∵
∴
∴
∵,
∴,,
∴∠CBD=∠CED,
∴;
(2)成立,理由如下:
如圖,過點(diǎn)作的平行線交于,
∴,,
∵是等邊三角形,
∴,,
∴,
∵,
∴為等邊三角形,
∴,
∵,
∴,
∴,
∵,
,
∴,
在和中,,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像與軸交于點(diǎn),且與軸以及一次函數(shù)的圖像分別交于點(diǎn)、,點(diǎn)的坐標(biāo)為.
(1)關(guān)于、的方程組的解為______________.
(2)關(guān)于的不等式的解集為__________________.
(3)求四邊形的面積;
(4)在軸上是否存在點(diǎn),使得以點(diǎn),,為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)曾有許多重要的成就,其中“楊輝三角” (如圖)就是一例. 這個(gè)三角形給出了(=1,2,3,4,5,6)的展開式(按的次數(shù)由大到小順序排列)的系數(shù)規(guī)律.例如,第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)展開式中各項(xiàng)的系數(shù);第五行的五個(gè)數(shù)1,4,6,4,1,恰好對(duì)應(yīng)著展開式中各項(xiàng)的系數(shù).
(1)展開式中的系數(shù)為________;
(2)展開式中各項(xiàng)系數(shù)的和為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)媒體報(bào)道,在第52屆國(guó)際速錄大賽中我國(guó)速錄選手獲得了7枚金牌、7枚銀牌和4枚銅牌,在國(guó)際舞臺(tái)上展示了指尖上的“中國(guó)速度”.看到這則新聞后,學(xué)生小明和小海很受鼓舞,決定利用業(yè)余時(shí)間練習(xí)打字.經(jīng)過一段時(shí)間的努力,他們的錄入速度有了明顯的提高.經(jīng)測(cè)試現(xiàn)在小明打140個(gè)字所用時(shí)間與小海打175個(gè)字所用時(shí)間相同,小明平均每分鐘比小海少打15個(gè)字.請(qǐng)求出小明平均每分鐘打字的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC右側(cè)作射線CP,∠ACP=(0°<<60°),點(diǎn)A關(guān)于射線CP的對(duì)稱點(diǎn)為點(diǎn)D,BD交CP于點(diǎn)E,連接AD,AE.
(1)求∠DBC的大。ㄓ煤的代數(shù)式表示);
(2)在(0°<<60°)的變化過程中,∠AEB的大小是否發(fā)生變化?如果發(fā)生變化,請(qǐng)直接寫出變化的范圍;如果不發(fā)生變化,請(qǐng)直接寫出∠AEB的大;
(3)用等式表示線段AE,BD,CE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有些數(shù)在我們?nèi)粘I钪写硪欢ǖ暮x,如:,,,等。若在前后各添上一個(gè)數(shù)字,組成一個(gè)新的五位數(shù),則稱這個(gè)五位數(shù)為“戀語數(shù)”;如在前添上一個(gè)數(shù)字,在后添上一個(gè)數(shù)字,組成一個(gè)新的五位數(shù),則稱這個(gè)五位數(shù)為“戀語數(shù)”若這個(gè)“戀語數(shù)”能被整除,則稱這個(gè)數(shù)為“幸福之家數(shù)”.
(1)請(qǐng)你直接寫出到之間所有的“幸福之家數(shù)”;
(2)請(qǐng)你求出能被能被整除的所有“幸福之家數(shù)”的最大值與最小值之差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,兩車各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)趟數(shù)是甲車的2倍,且乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民晚飯后1小時(shí)內(nèi)的生活方式,調(diào)查小組設(shè)計(jì)了“閱讀”、“鍛煉”、“看電視”和“其它”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了 名市民;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市共有480萬市民,估計(jì)該市市民晚飯后1小時(shí)內(nèi)鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù).例如:.在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”,當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:,這樣的分式就是假分式;,這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即整式與真分式和的形式).
例如:①;
②.
(1)將分式化為帶分式;
(2)若分式的值為整數(shù),求的整數(shù)值;
(3)在代數(shù)式中,若,均為整數(shù),請(qǐng)寫出所有可能的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com