【題目】如圖所示,在△ABC中,,D、E分別是邊AB、BC上的動點(diǎn),且,連結(jié)AD、AE,點(diǎn)M、N、P分別是CD、AE、AC的中點(diǎn),設(shè).
(1)觀察猜想
①在求的值時(shí),小明運(yùn)用從特殊到一般的方法,先令,解題思路如下:
如圖1,先由,得到,再由中位線的性質(zhì)得到,
,進(jìn)而得出△PMN為等邊三角形,∴.
②如圖2,當(dāng),仿照小明的思路求的值;
(2)探究證明
如圖3,試猜想的值是否與的度數(shù)有關(guān),若有關(guān),請用含的式子表示出,若無關(guān),請說明理由;
(3)拓展應(yīng)用
如圖4,,點(diǎn)D、E分別是射線AB、CB上的動點(diǎn),且,點(diǎn)M、N、P分別是線段CD、AE、AC的中點(diǎn),當(dāng)時(shí),請直接寫出MN的長.
【答案】(1)②;(2)的值與的度數(shù)有關(guān),;(3)MN的長為或.
【解析】
(1)②先根據(jù)線段的和差求出,再根據(jù)中位線定理、平行線的性質(zhì)得出,從而可得出,然后根據(jù)等腰直角三角形的性質(zhì)即可得;
(2)參照題(1)的方法,得出為等腰三角形和的度數(shù),再利用等腰三角形的性質(zhì)即可求出答案;
(3)分兩種情況:當(dāng)點(diǎn)D、E分別是邊AB、CB上的動點(diǎn)時(shí)和當(dāng)點(diǎn)D、E分別是邊AB、CB的延長線上的動點(diǎn)時(shí),如圖(見解析),先利用等腰三角形的性質(zhì)與判定得出,再根據(jù)相似三角形的判定與性質(zhì)得出BC、CE的長,由根據(jù)等腰三角形的三線合一性得出,從而可得的值,最后分別利用(2)的結(jié)論即可得MN的長.
(1)②
∴
∴為等腰直角三角形,
∵點(diǎn)M、N、P分別是CD、AE、AC的中點(diǎn)
∴
∴為等腰直角三角形,
∴
即;
(2)的值與的度數(shù)有關(guān),求解過程如下:
由(1)可知,,即為等腰三角形
如圖5,作
則
在中,,即
則;
(3)依題意,分以下兩種情況:
①當(dāng)點(diǎn)D、E分別是邊AB、CB上的動點(diǎn)時(shí)
如圖6,作的角平分線交AB邊于點(diǎn)F,并連結(jié)BP
,
,即
設(shè),則
解得或(不符題意,舍去)
即
由(2)可知,
點(diǎn)P是AC上的中點(diǎn)
,(等腰三角形的三線合一)
在中,,即
②如圖7,當(dāng)點(diǎn)D、E分別是邊AB、CB的延長線上的動點(diǎn)時(shí)
同理可得:
綜上,MN的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x﹣3交于,B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D.
(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)以O,A,P,D為頂點(diǎn)的平行四邊形是否存在若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點(diǎn)F.
(1)求證:BF=BC;
(2)若AB=4cm,AD=3cm,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如 圖 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作發(fā)現(xiàn):
(1)將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△AC′D,過點(diǎn) C 作 AC′的平行線,與 DC'的延長線 交于點(diǎn) E,則四邊形 ACEC′的形狀是 .
(2)創(chuàng)新小組將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使 B、 A、D 三點(diǎn)在同一條直線上,得到如圖 3 所示的△AC′D,連接 CC',取 CC′的中 點(diǎn) F,連接 AF 并延長至點(diǎn) G,使 FG=AF,連接 CG、C′G,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC 沿著 BD 方向平移,使點(diǎn) B 與點(diǎn) A 重合,此時(shí) A 點(diǎn)平移至 A'點(diǎn),A'C 與 BC′相交于點(diǎn) H, 如圖 4 所示,連接 CC′,試求 tan∠C′CH 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿方向以每秒2個單位長度的速度向點(diǎn)勻速運(yùn)動,同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個單位長度的速度向點(diǎn)勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時(shí),另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)運(yùn)動的時(shí)間是秒.過點(diǎn)作于點(diǎn),連接.
(1)______.(用含的代數(shù)式表示)
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請說明理由.
(3)當(dāng)為何值時(shí),為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖1;
(2)求圖2中表示家長“贊成”的圓心角的度數(shù);
(3)已知某地區(qū)共6500名家長,估計(jì)其中反對中學(xué)生帶手機(jī)的大約有多少名家長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并直接寫出A、C兩點(diǎn)的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對稱的圖形△A2B2C2,并直接寫出點(diǎn)A2、B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃購進(jìn)A,B兩種型號的手機(jī),已知每部A型號手機(jī)的進(jìn)價(jià)比每部B型號手機(jī)進(jìn)價(jià)多500元,每部A型號手機(jī)的售價(jià)是2500元,每部B型號手機(jī)的售價(jià)是2100元.
(1)若商場用50000元共購進(jìn)A型號手機(jī)10部,B型號手機(jī)20部,求A、B兩種型號的手機(jī)每部進(jìn)價(jià)各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機(jī)共40部,且A型號手機(jī)的數(shù)量不少于B型號手機(jī)數(shù)量的2倍.
①該商場有哪幾種進(jìn)貨方式?
②該商場選擇哪種進(jìn)貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個三角尺的斜邊上移動,在這個運(yùn)動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?
小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對它們之間的關(guān)系進(jìn)行了探究.
下面是小林的探究過程,請補(bǔ)充完整:
(1)畫出幾何圖形,明確條件和探究對象;
如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點(diǎn),射線DE⊥BC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcm,E,F兩點(diǎn)間的距離為ycm.
(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | 4.5 | 6 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時(shí),BE的長度約為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com