【題目】如圖,在中,,,點(diǎn)在邊上,以點(diǎn)為圓心作⊙.當(dāng)⊙恰好同時(shí)與邊,相切時(shí),⊙的半徑長(zhǎng)為________.
【答案】
【解析】
作AH⊥BC于H,DE⊥BC于E,DF⊥AC于F,連接CD,如圖,設(shè)⊙D的半徑為r,先利用等腰三角形的性質(zhì)得BH=CH=BC=5,則利用勾股定理可計(jì)算出AH=12,再根據(jù)切線的性質(zhì)得DE=DF=r,然后根據(jù)三角形面積公式得到AHBC=DEBC+DFAC,即×10r+×13×r=×10×12,,再解關(guān)于r的方程即可.
作AH⊥BC于H,DE⊥BC于E,DF⊥AC于F,連接CD,如圖,設(shè) D的半徑為r,
∵AB=AC,AH⊥BC,
∴BH=CH=BC=5,
在Rt△ABH中,根據(jù)勾股定理求得AH=12,
∵⊙D同時(shí)與邊AC、BC相切,
∴DE=DF=r,
∵S△ABC=S△ADC+S△DBC,
∴AHBC=DEBC+DFAC,
即×10r+×13×r=×10×12,
∴r=,
即當(dāng) D恰好同時(shí)與邊AC、BC相切時(shí),此時(shí) D的半徑長(zhǎng)為.
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,已知△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,4)、(﹣1,2),點(diǎn)B坐標(biāo)為(﹣2,1).
(1)請(qǐng)?jiān)趫D中正確地作出平面直角坐標(biāo)系,畫出點(diǎn)B,并連接AB、BC;
(2)將△ABC沿x軸正方向平移5個(gè)單位長(zhǎng)度后,再沿x軸翻折得到△DEF,畫出△DEF;
(3)點(diǎn)P(m,n)是△ABC的邊上的一點(diǎn),經(jīng)過(2)中的變化后得到對(duì)應(yīng)點(diǎn)Q,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將直角邊長(zhǎng)為的等腰直角放在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)、分別在軸,軸的正半軸上,一條拋物線經(jīng)過點(diǎn)、及點(diǎn).
求該拋物線的解析式;
若點(diǎn)是線段上一動(dòng)點(diǎn),過點(diǎn)作的平行線交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若點(diǎn)在拋物線上,則稱點(diǎn)為拋物線的不動(dòng)點(diǎn),將中的拋物線進(jìn)行平移,平移后,該拋物線只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線上,求此時(shí)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,和的平分線交于點(diǎn),過點(diǎn)作交于,光于,若、周長(zhǎng)分別為和.
(1)求證:;
(2)線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長(zhǎng)線上,DE=DA.
(1)求證:∠BAD=∠EDC;
(2)作出點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)M,連接DM、AM,猜想DM與AM的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)為圓心的圓,交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的下方),,將繞點(diǎn)旋轉(zhuǎn)180,得到 .
(1)求,兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫出線段,,并判斷四邊形的形狀(不必證明),求出點(diǎn)的坐標(biāo);
(3)動(dòng)直線從與重合的位置開始繞點(diǎn)順時(shí)針旋轉(zhuǎn),到與重合時(shí)停止,設(shè)直線 與的交點(diǎn)為,點(diǎn)為的中點(diǎn),過點(diǎn)作于點(diǎn),連接, .問:在旋轉(zhuǎn)過程中,的大小是否變化?若不變,求出的度數(shù);若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,直線經(jīng)過點(diǎn)A,且BD⊥l于的D,CE⊥l于的E.
(1)求證:BD+CE=DE;
(2)當(dāng)變換到如圖②所示的位置時(shí),試探究BD、CE、DE的數(shù)量關(guān)系,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com