【題目】如圖,以點(diǎn)為圓心的圓,交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),交軸于兩點(diǎn)(點(diǎn)在點(diǎn)的下方),,將繞點(diǎn)旋轉(zhuǎn)180,得到 .

(1),兩點(diǎn)的坐標(biāo);

(2)請(qǐng)?jiān)趫D中畫出線段,,并判斷四邊形的形狀(不必證明),求出點(diǎn)的坐標(biāo);

(3)動(dòng)直線從與重合的位置開始繞點(diǎn)順時(shí)針旋轉(zhuǎn),到與重合時(shí)停止,設(shè)直線 的交點(diǎn)為,點(diǎn)的中點(diǎn),過點(diǎn)于點(diǎn),連接.:在旋轉(zhuǎn)過程中,的大小是否變化?若不變,求出的度數(shù);若變化,請(qǐng)說明理由.

【答案】(1)、兩點(diǎn)的坐標(biāo)分別為(-3,0)(1,0);(2) 是平行四邊形,點(diǎn)的坐標(biāo)為;(3)在旋轉(zhuǎn)過程中, 的大小不變,始終等于120°.

【解析】

(1)連接PA,運(yùn)用垂徑定理及勾股定理即可求出圓的半徑,從而可以求出B、C兩點(diǎn)的坐標(biāo);(2)由于⊙P是中心對(duì)稱圖形,顯然射線AP與⊙P的交點(diǎn)就是所需畫的點(diǎn)M,連接MB、MC即可;易證四邊形ACMB是矩形;過點(diǎn)MMH⊥BC,垂足為H,易證△MHP≌△AOP,從而求出MH、OH的長(zhǎng),進(jìn)而得到點(diǎn)M的坐標(biāo);(3)易證點(diǎn)E、M、B、G在以點(diǎn)Q為圓心,QB為半徑的圓上,從而得到∠MQG=2∠MBG.易得∠OCA=60°,從而得到∠MBG=60°,進(jìn)而得到∠MQG=120°,所以∠MQG是定值.

(1)連接PA,如圖1所示.

∵PO⊥AD,

∴AO=DO.

∵AD=2 ,

∴OA=

∵點(diǎn)P坐標(biāo)為(-1,0),

∴OP=1.

∴PA==2.

∴BP=CP=2.

∴B(-3,0),C(1,0).

(2)連接AP,延長(zhǎng)AP交⊙P于點(diǎn)M,連接MB、MC.

如圖2所示,線段MB、MC即為所求作.

四邊形ACMB是矩形.

理由如下:

∵△MCB由△ABC繞點(diǎn)P旋轉(zhuǎn)180°所得,

∴四邊形ACMB是平行四邊形.

∵BC是⊙P的直徑,

∴∠CAB=90°.

∴平行四邊形ACMB是矩形.

過點(diǎn)MMH⊥BC,垂足為H,如圖2所示.

在△MHP和△AOP中,

∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,

∴△MHP≌△AOP.

∴MH=OA=,PH=PO=1.

∴OH=2.

∴點(diǎn)M的坐標(biāo)為(-2,).

(3)在旋轉(zhuǎn)過程中∠MQG的大小不變.

∵四邊形ACMB是矩形,

∴∠BMC=90°.

∵EG⊥BO,

∴∠BGE=90°.

∴∠BMC=∠BGE=90°.

∵點(diǎn)QBE的中點(diǎn),

∴QM=QE=QB=QG.

∴點(diǎn)E、M、B、G在以點(diǎn)Q為圓心,QB為半徑的圓上,如圖3所示.

∴∠MQG=2∠MBG.

∵∠COA=90°,OC=1,OA=

∴tan∠OCA=,

∴∠OCA=60°.

∴∠MBC=∠BCA=60°.

∴∠MQG=120°.

∴在旋轉(zhuǎn)過程中∠MQG的大小不變,始終等于120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系上,已知點(diǎn)A8,4),ABy軸于BACx軸于C,直線yxABD

1)直接寫出BC、D三點(diǎn)坐標(biāo);

2)若EOD延長(zhǎng)線上一動(dòng)點(diǎn),記點(diǎn)E橫坐標(biāo)為aBCE的面積為S,求Sa的關(guān)系式;

3)當(dāng)S20時(shí),過點(diǎn)EEFABF,G、H分別為AC、CB上動(dòng)點(diǎn),求FG+GH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中,兩實(shí)數(shù)根的和為的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo),且,滿足

(1)如圖(1)當(dāng)為等腰直角三角形時(shí);

①點(diǎn)坐標(biāo)為__________;點(diǎn)坐標(biāo)為__________.

②在(1)的條件下,分別以為邊作等邊和等邊,連結(jié),求的度數(shù).

(2)如圖(2),過點(diǎn)軸于點(diǎn),點(diǎn)軸正半軸上一點(diǎn),延長(zhǎng)線上一點(diǎn),以為直角邊作等腰直角三角形,,過點(diǎn)軸交于點(diǎn),連結(jié),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)在邊上,以點(diǎn)為圓心作⊙.當(dāng)⊙恰好同時(shí)與邊,相切時(shí),⊙的半徑長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ba,b)是第一象限內(nèi)一點(diǎn),且ab滿足等式a2-6a+9+|b-1|=0

1)求點(diǎn)B的坐標(biāo);

2)如圖,動(dòng)點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度從O點(diǎn)出發(fā),沿x軸的正半軸方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度從O點(diǎn)出發(fā),沿y軸的正半軸方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),ABCAB為斜邊的等腰直角三角形;

3)如圖,在(2)的條件下,作∠ABC的平分線BD,設(shè)BD的長(zhǎng)為mADB的面積為S.請(qǐng)用含m的式子表示S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1日是中華人民共和國(guó)成立周年紀(jì)念日,某商家用元購進(jìn)了一批紀(jì)念衫,上市后果然供不應(yīng)求,商家又用元購進(jìn)了第二批這種紀(jì)念衫,所購數(shù)量是第一批購進(jìn)量的倍,但每件貴了.

(1)該商家購進(jìn)的第一批紀(jì)念衫單價(jià)是多少元?

(2)若兩批紀(jì)念衫按相同的標(biāo)價(jià)銷售,最后剩下件按標(biāo)價(jià)八折優(yōu)惠賣出,如果兩批紀(jì)念衫全部售完利潤(rùn)不低于(不考慮其他因素),那么每件紀(jì)念衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(),在四邊形中,,,,分別是上的點(diǎn),且.探究圖中線段,之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長(zhǎng)到點(diǎn),使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

如圖(),若在四邊形中,,,分別是,上的點(diǎn),且,上述結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定在47日開展世界無煙日宣傳活動(dòng),活動(dòng)有A.社區(qū)板報(bào)、B.集會(huì)演講、C.喇叭廣播、D.發(fā)宣傳畫四種宣傳方式.學(xué)校圍繞你最喜歡的宣傳方式是什么?在全校學(xué)生中進(jìn)行隨機(jī)抽樣調(diào)查(四個(gè)選項(xiàng)中必選且只選一項(xiàng)),根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如下兩種不完整的統(tǒng)計(jì)圖表:

請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問題:

1)本次抽查的學(xué)生共______人,m=____________,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)若該校學(xué)生有1500人,請(qǐng)你估計(jì)該校喜歡集會(huì)演講這項(xiàng)宣傳方式的學(xué)生約有多少人?

3)學(xué)校采用抽簽方式讓每班在A、B、C、D四種宣傳方式中隨機(jī)抽取兩種進(jìn)行展示,請(qǐng)用樹狀圖或列表法求某班所抽到的兩種方式恰好是集會(huì)演講喇叭廣播的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案