【題目】已知:如圖,在△ABC中,DE∥BC,AD2=AEAC.求證:
(1)△BCD∽△CDE;
(2)

【答案】
(1)證明:∵AD2=AEAC,

,

∵∠A是公共角,

∴△ADC∽△AED,

∴∠ACD=∠ADE,

∵DE∥BC,

∴∠ADE=∠B,∠BCD=∠CDE,

∴∠ECD=∠B,

∴△BCD∽△CDE


(2)證明:∵△BCD∽△CDE,

∴DE= ,

∵DE∥BC,

∴△ADE∽△ABC,

,


【解析】(1)由AD2=AEAC,易證得△ADC∽△AED,即可得∠ACD=∠ADE,又由DE∥BC,易證得∠ECD=∠B,則可證得△BCD∽△CDE;(2)由△BCD∽△CDE,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得 ,又由DE∥BC,可得△ADE∽△ABC,即可得 ,繼而得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=B1A1C=30°,AB=2BC.

(1)固定三角板A1B1C,然后將三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖2的位置,ABA1C、A1B1分別交于點(diǎn)D、E,ACA1B1交于點(diǎn)F.

①填空:當(dāng)旋轉(zhuǎn)角等于20°時(shí),∠BCB1=   度;

②當(dāng)旋轉(zhuǎn)角等于多少度時(shí),ABA1B1垂直?請(qǐng)說(shuō)明理由.

(2)將圖2中的三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使ABCB1,ABA1C交于點(diǎn)D,試說(shuō)明A1D=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

碟子的個(gè)數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含x的式子表示);

2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的結(jié)論有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E,連接CD.
(1)求證:DE為⊙O的切線;
(2)若AB=4 ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2+bx+c與x軸交于A,B兩點(diǎn),其中B(6,0),與y軸交于點(diǎn)C(0,8),點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)C重合).

(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E,點(diǎn)E關(guān)于直線PC的對(duì)稱點(diǎn)為E′,若點(diǎn)E′落在y軸上(不與點(diǎn)C重合),請(qǐng)判斷以P,C,E,E′為頂點(diǎn)的四邊形的形狀,并說(shuō)明理由;
(3)在(2)的條件下直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c=0;④若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 , 其中正確結(jié)論是:(填上序號(hào)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)
.
(2)解分式方程:

查看答案和解析>>

同步練習(xí)冊(cè)答案