【題目】如圖,在頂點(diǎn)為P的拋物線 的對(duì)稱軸l上取 ,過A 交拋物線于B,C兩點(diǎn)(BC左側(cè)),點(diǎn)和點(diǎn)A關(guān)于點(diǎn)P對(duì)稱,過 ,又分別過B,C ,垂足為E,D,在這里我們把點(diǎn)A叫拋物線的焦點(diǎn),BC叫拋物線的直徑,矩形BCDE叫拋物線的焦點(diǎn)矩形.

(1)直接寫出拋物線 的焦點(diǎn)坐標(biāo)及其直徑;

(2)求拋物線 的焦點(diǎn)坐標(biāo)及其直徑;

(3)已知拋物線的直徑為 ,求a的值;

(4)①已知拋物線 的焦點(diǎn)矩形的面積為2,求a的值;

②直接寫出拋物線的焦點(diǎn)矩形與拋物線 有兩個(gè)公共點(diǎn)時(shí)m的取值范圍.

【答案】(1) (0,1),4(2) (3,3)4;(3) ;(4) ;②

【解析】

(1)根據(jù)題意可以求得拋物線 的焦點(diǎn)坐標(biāo)及其直徑;

(2)根據(jù)題意可以求得拋物線 的焦點(diǎn)坐標(biāo)及其直徑;

(3)根據(jù)題意和拋物線的直徑為 ,列方程即求a的值;

(4)①根據(jù)題意和拋物線的焦點(diǎn)矩形的面積為2,列方程即求的值;
②根據(jù)(2)中的結(jié)果和圖形可以求得拋物線的焦點(diǎn)矩形與拋物線 有兩個(gè)公共點(diǎn)時(shí)m的取值范圍.

(1)∵拋物線中,,,,

∴此拋物線焦點(diǎn)的橫坐標(biāo)是,,縱坐標(biāo)是:

∴拋物線的焦點(diǎn)坐標(biāo)為(0,1),

代入得:,

∴此拋物線的直徑是:

(2)∵拋物線中,,,

∴此拋物線焦點(diǎn)的橫坐標(biāo)是,,縱坐標(biāo)是:,

∴拋物線的焦點(diǎn)坐標(biāo)為(3,3)

代入得:,

∴此拋物線的直徑是:;

(3)∵拋物線的焦點(diǎn)為A(,),

解得:,

∴此拋物線的直徑是:;

解得:,

的值是;

(4)設(shè)拋物線解析式為:,

①由(3)得,BC,

焦點(diǎn)為A(,),頂點(diǎn)為P(,),

根據(jù)題意:,

解得:

的值是;

②當(dāng) 時(shí),有兩個(gè)公共點(diǎn),

理由:由(2)知拋物線的焦點(diǎn)矩形頂點(diǎn)坐標(biāo)分別為:
B(1,3)C(5,3)E(1,1),D(51),

當(dāng)B(13)時(shí),

解得:(舍去),

C(5,3)時(shí),(舍去)

由圖可知,公共點(diǎn)個(gè)數(shù)隨m的變化關(guān)系為:

當(dāng)時(shí),無公共點(diǎn);
當(dāng)時(shí),1個(gè)公共點(diǎn);
當(dāng)時(shí),2個(gè)公共點(diǎn);
當(dāng)時(shí),3個(gè)公共點(diǎn);
當(dāng)時(shí),有2個(gè)公共點(diǎn);

當(dāng)時(shí),1個(gè)公共點(diǎn);

當(dāng)時(shí),無公共點(diǎn);
由上可得,當(dāng)時(shí),有2個(gè)公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,已知點(diǎn)和點(diǎn)的坐標(biāo)分別為,,將繞點(diǎn)按順時(shí)針分別旋轉(zhuǎn),得到,,拋物線經(jīng)過點(diǎn),;拋物線經(jīng)過點(diǎn),,

1)求拋物線的解析式.

2)如果點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn).

①若 ,求點(diǎn)的坐標(biāo);

②如圖,過點(diǎn)軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),記,求的函數(shù)關(guān)系式.當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC90°,EBC的中點(diǎn),AEBD相交于點(diǎn)F.若BC4,∠CBD30°,則BF的長(zhǎng)為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)DE的中點(diǎn),連接AEBC于點(diǎn)F,∠ACB =2EAB

1)求證:AC是⊙O的切線;

2)若,,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 RtABC 中,∠ACB90°,BE 平分∠ABCD 是邊 AB 上一點(diǎn),以 BD為直徑的⊙O 經(jīng)過點(diǎn) E,且交 BC 于點(diǎn) F

1)求證:AC 是⊙O 的切線;

2)若 BC8,⊙O 的半徑為 5,求 CE 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB∠DEC=90°

1)求證:AC∥DE;

2)過點(diǎn)BBF⊥AC于點(diǎn)F,連接EF,試判別四邊形BCEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,某銷售商在網(wǎng)上銷售A、B兩種型號(hào)的電腦“手寫板”,其進(jìn)價(jià)、售價(jià)和每日銷量如下表所示:

進(jìn)價(jià)(元/個(gè))

售價(jià)(元/個(gè))

銷量(個(gè)/日)

A

400

600

200

B

800

1200

400

根據(jù)市場(chǎng)行情,該銷售商對(duì)A型手寫板降價(jià)銷售,同時(shí)對(duì)B型手寫板提高售價(jià),此時(shí)發(fā)現(xiàn)A型手寫板每降低5元就可多賣1個(gè),B型手寫板每提高5元就少賣1個(gè).銷售時(shí)保持每天銷售總量不變,設(shè)其中A型手寫板每天多銷售x個(gè),每天獲得的總利潤(rùn)為y元.

1)求yx之間的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

2)要使每天的利潤(rùn)不低于212000元,求出x的取值范圍;

3)該銷售商決定每銷售一個(gè)B型手寫板,就捐助a給受“新冠疫情”影響的困難學(xué)生,若當(dāng)30x40時(shí),每天的最大利潤(rùn)為203400元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師和學(xué)生一起去測(cè)量學(xué)校升旗臺(tái)上旗桿AB的高度.如圖,老師測(cè)得升旗臺(tái)前斜坡AC的坡度為110(即AECE110),學(xué)生小明站在離升旗臺(tái)水平距離為35m(即CE35m)處的C點(diǎn),測(cè)得旗桿頂端B的仰角α30°,已知小明身高CD1.6m,求旗桿AB的高度.(參考數(shù)據(jù):tan30°0.58,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案