【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°

1)求證:AC∥DE;

2)過點BBF⊥AC于點F,連接EF,試判別四邊形BCEF的形狀,并說明理由.

【答案】1)證明:四邊形ABCD是矩形,

∴AB∥CD,

∴∠ACD=∠CAB

∵∠EDC=∠CAB,

∴∠EDC=∠ACD,

∴AC∥DE

2)四邊形BCEF是平行四邊形

【解析】在矩形ABCD中,AC∥DE,∴∠DCA=∠CAB,∵∠EDC=∠CAB,

∴∠DCA=∠EDC,∴AC∥DE;

四邊形BCEF是平行四邊形.

理由:由∠DEC=90°,BF⊥AC,可得∠AFB=∠DEC=90°,

∠EDC=∠CAB,AB=CD,

∴△DEC≌△AFB∴DE=AF,由AC∥DE,

四邊形AFED是平行四邊形,∴AD∥EFAD=EF,

在矩形ABCD中,AD∥BCAD=BC

∴EF∥BCEF=BC,

四邊形BCEF是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過CCB⊥x軸于B,

(1)求ab的值;

(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,求出P點坐標;

(3)若過BBD∥ACy軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,

①求:∠CAB+∠ODB的度數(shù);

②求:∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCO,O為坐標原點,B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限,且是兩直線y1=2x+6、y2=2x﹣6中某條上的一點,若△APD是等腰Rt△,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當均為正整數(shù)時,若,用含m、n的式子分別表示,得    ,   

(2)利用所探索的結(jié)論,找一組正整數(shù),填空:    =(      )2

(3)若,且均為正整數(shù),求的值.

【答案】(1);(2)4,2,1,1(答案不唯一);(3)=713

【解析】分析:(1)由a+b=(m+n)2,展開比較系數(shù)可得答案;

(2)取m=1,n=1,可得ab的值,可得答案;

(3)由題意得mn的方程,解方程可得mn,可得a值.

詳解:(1)∵a+b=(m+n)2,

∴a+b=m2+3n2+2mn,

∴a=m2+3n2,b=2mn.

故答案為:m2+3n2,2mn.

(2)設m=1,n=1,

∴a=m2+3n2=4,b=2mn=2.

故答案為4、2、1、1.

(3)由題意,得:

a=m2+3n2,b=2mn

∵4=2mn,且m、n為正整數(shù),

∴m=2,n=1或者m=1,n=2,

∴a=22+3×12=7,或a=12+3×22=13.

點睛:本題主要考查二次根式的混合運算,完全平方公式,解題的關鍵在于熟練運算完全平方公式和二次根式的運算法則.

型】解答
結(jié)束】
28

【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足

□ABCD的邊ADy軸交于點E,且EAD中點,雙曲線經(jīng)過C、D兩點.

(1)若點D點縱坐標為t,則C點縱坐標為 (含t的代數(shù)式表示),k的值為 ;

(2)點P在雙曲線上,點Qy軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;

(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,MHT的中點,MNHT,交ABN,連接FN,當TAF上運動時,試判斷∠ATH與∠AFN之間的數(shù)量關系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為原點,A,B為數(shù)軸上兩點,AB=15,且OA:OB=2

(1)A,B對應的數(shù)分別為   ,   

(2)點A,B分別以2個單位/秒和5個單位/秒的速度相向而行,則幾秒后A,B相距1個單位長度?

(3)點AB以(2)中的速度同時向右運動,點P從原點O4個單位秒的速度向右運動,是否存在常數(shù)m,使得3AP+2PB﹣mOP為定值?若存在,請求出m值以及這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用錘子以均勻的力敲擊鐵釘入木板.隨著鐵釘?shù)纳钊,鐵釘所受的阻力會越來越大,使得每次釘入木板的釘子的長度后一次為前一次的k倍(0<k<1).已知一個釘子受擊3次后恰好全部進入木板,且第一次受擊后進入木板部分的鐵釘長度是釘長的 .設鐵釘?shù)拈L度為1,那么符合這一事實的方程是( )
A.
(1+k)2=1
B.
k+ k2=1
C.
+ k+ k2=1
D.
+ (1+k)2=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關注,信豐縣某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題

(1)接受問卷調(diào)查的學生共有  人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形圓心角是  度;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生1200人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4x軸、y軸分別交于A、B兩點,求線段AB的長.

(2)如圖2,類比(1)的解題過程,請你通過構造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎上,若有一點Dx軸上運動,當滿足DM=DN時,請求出此時點D的坐標.

查看答案和解析>>

同步練習冊答案