【題目】如圖,將的邊延長到點,使,交邊于點.

求證:

,求證:四邊形是矩形

【答案】()證明見解析;(2)證明見解析.

【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得AD//BCAD=BC,繼而由AD=AF,可得四邊形AFBC是平行四邊形,根據(jù)平行四邊形的對角線互相平分即可得結(jié)論;

(2)由四邊形AFBC是平行四邊形,可得CE=FEAE=EB,由DC//AB可得∠BAF=D,繼而由∠BEF=2D以及三角形外角的性質(zhì)可得∠EAF=AFE,由此得EA=EF,進而得出AB=CF,根據(jù)對角線相等的平行四邊形是矩形即可得結(jié)論.

(1)四邊形是平行四邊形,

,

,

四邊形是平行四邊形,

;

四邊形是平行四邊形,

四邊形是平行四邊形,

DC//AB

,

,

,

,

,

,

平行四邊形是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點,過點A的⊙FAB于點D,E是線段BC上一點,且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=―ax2+2ax+c(a>0)的圖象交x軸于AB兩點,交y軸于點C,過A的直線y=kx+2k(k≠0)與這個二次函數(shù)圖象交于另一點F,與其對稱軸交于點E,與y軸交于點D,且DE=EF

(1)求A點坐標;

(2)若△BDF的面積為12,求此二次函數(shù)的表達式;

(3)設(shè)二次函數(shù)圖象頂點為P,連接PF,PC,若∠CPF=2∠DAB,求此二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,BC分別是⊙O的直徑和弦,點D上一點,弦DE交⊙O于點E,交AB于點F,交BC于點G,過點C的切線交ED的延長線于H,且HC=HG,連接BH,交⊙O于點M,連接MD,ME

求證:

1DEAB

2HMD=MHE+MEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.

(1)填空:與∠AOE互補的角有   ;

(2)若∠COD=30°,求∠DOE的度數(shù);

(3)當∠AOD=α°時,請直接寫出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是射線上一點,過軸于點,以為邊在其右側(cè)作正方形,過的雙曲線邊于點,則的值為  

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)(3分)如圖(1),正方形AEGH的頂點E、H在正方形ABCD的邊上,直接寫出HDGCEB的結(jié)果(不必寫計算過程);

(2)(3分)將圖(1)中的正方形AEGH繞點A旋轉(zhuǎn)一定角度,如圖(2),求HDGCEB;

(3)(2分)把圖(2)中的正方形都換成矩形,如圖(3),且已知DAAB=HAAE=m: n,此時HDGCEB的值與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫出變化后的結(jié)果(不必寫計算過程).

查看答案和解析>>

同步練習(xí)冊答案