【題目】如圖,是射線上一點,過軸于點,以為邊在其右側(cè)作正方形,過的雙曲線邊于點,則的值為  

A. B. C. D. 1

【答案】A

【解析】

設點A的橫坐標為m(m0),則點B的坐標為(m0),把xm代入得到點A的坐標,結合正方形的性質(zhì),得到點C,點D和點E的橫坐標,把點A的坐標代入反比例函數(shù),得到關于mk的值,把點E的橫坐標代入反比例函數(shù)的解析式,得到點E的縱坐標,求出線段DE和線段EC的長度,即可得到答案.

:設點A的橫坐標為m(m0),則點B的坐標為(m0),

xm代入,得.

則點A的坐標為:(m),線段AB的長度為,點D的縱坐標為.

∵點A在反比例函數(shù)上,

即反比例函數(shù)的解析式為:

∵四邊形ABCD為正方形,

∴四邊形的邊長為.

∴點C、點D、點E的橫坐標為:

x=代入得:.

∴點E的縱坐標為:,

CE=DE=,

.

故選擇:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結合兩校成績的平均數(shù)和中位數(shù),分析哪個學校的決賽成績較好;

(3)計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將的邊延長到點,使,交邊于點.

求證:

,求證:四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的原點為O,點A、BC是數(shù)軸上的三點,點B對應的數(shù)為1AB8,BC3,動點P、Q同時從A、C出發(fā),分別以每秒2個長度單位和每秒1個長度單位的速度沿數(shù)軸正方向運動.設運動時間為t秒(t0

1)求點A、C分別對應的數(shù);

2)求點P、Q分別對應的數(shù);(用含t的式子表示)

3)試問當t為何值時,OPOQ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎規(guī)則如下:①如圖,是一個材質(zhì)均勻可自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉(zhuǎn)動”(當轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針所指區(qū)域的字樣,我們稱這次轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”);③假設顧客轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動轉(zhuǎn)盤,直到轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”;④當顧客完成一次抽獎活動后,記下兩次指針所指區(qū)域的兩個字,只要這兩個字和獎品名稱的兩個字相同(與字的順序無關),便可獲得相應獎品一瓶;不相同時,不能獲得任何獎品.

根據(jù)以上規(guī)則,回答下列問題:

(1)求一次“有效隨機轉(zhuǎn)動”可獲得“樂”字的概率;

(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或樹狀圖等方法,求該顧客經(jīng)過兩次“有效隨機轉(zhuǎn)動”后,獲得一瓶可樂的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.

(3)若將A、C、D、E這四類上學方式視為綠色出行,請估計該校每天綠色出行的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.

(1)求證:AEF∽△ABC:

(2)求正方形EFMN的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi),已知點的坐標,點位置如圖所示,點與點關于原點對稱。

1)在圖中描出點;寫出圖中點的坐標:______________,點的坐標:_______________;

2)畫出關于軸的對稱圖形,并求出四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進枇杷20噸,桃子12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批水果運回,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.

1)如何安排甲、乙兩種貨車可一次性地運到?有幾種方案?

2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果商場應選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

同步練習冊答案