【題目】如圖,點(diǎn)P為△ABC的內(nèi)心,延長(zhǎng)AP交△ABC的外接圓于D,在AC延長(zhǎng)線上有一點(diǎn)E,滿足AD2=ABAE.
求證:DE是⊙O的切線.

【答案】證明:連接DC,DO并延長(zhǎng)交⊙O于F,連接AF.

∵P點(diǎn)為△ABC的內(nèi)心,

∴∠BAD=∠DAE,

又∵AD2=ABAE,即 = ,

∴△BAD∽△DAE,

∴∠ADB=∠E.

又∵∠ADB=∠ACB,

∴∠ACB=∠E,BC∥DE,

∴∠CDE=∠BCD=∠BAD=∠DAC,

又∵∠CAF=∠CDF,

∴∠FDE=∠CDE+∠CDF=∠DAC+∠CAF=∠DAF=90°,

故DE是⊙O的切線.


【解析】連接DC、AF,連接DO并延長(zhǎng)交圓O于點(diǎn)F,先證△BAD∽△DAE,得到∠ADB=∠E,再由平行線的性質(zhì)可證∠FDE=90°可得.解答此題的關(guān)鍵是作出輔助線,證出△BAD∽△DAE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。

舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。

應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD的對(duì)角線AC,BD相交于點(diǎn)OEF經(jīng)過(guò)點(diǎn)O,分別交AD,BC于點(diǎn)EF,且OE4,AB5BC9,則四邊形ABFE的周長(zhǎng)是( )

A. 13 B. 16 C. 22 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁一起研究一道數(shù)學(xué)題,如圖,已知 EFAB,CDAB,甲說(shuō):“如果還知道∠CDG=BFE,則能得到∠AGD=ACB.”乙說(shuō):“如果還知道∠AGD=ACB,則能得到∠CDG=BFE.”丙說(shuō):“∠AGD 一定大于∠BFE.”丁說(shuō):“如果連接 GF,則 GFAB.”他們四人中,正確的是(  )

A.0 個(gè)B.1 個(gè)C.2 個(gè)D.3 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD.∠1=2,∠3=4,試說(shuō)明 ADBE,請(qǐng)你將下面解答過(guò)程填寫(xiě)完整.

解:∵ABCD

∴∠4=

∵∠3=4

∴∠3= (等量代換)

∵∠1=2

∴∠1+CAF=2+CAE 即∠BAE=

∴∠3=

ADBE ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,結(jié)合下圖,試探索這兩個(gè)角之間的數(shù)量關(guān)系,并說(shuō)明你的理由.

1)如圖1,AB∥EF,BC∥DE.猜想∠1∠2的數(shù)量關(guān)系是:_______.

2)如圖2AB∥EF,BC∥DE. 猜想∠1∠2的數(shù)量關(guān)系是:_______.

3)由(1)(2)可以得出的結(jié)論是:如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角_____ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 ADBC,垂足為點(diǎn) DEFBC,垂足為點(diǎn) F,∠1+2=180°, 請(qǐng)?zhí)顚?xiě)∠CGD=CAB 的理由.

解:因?yàn)?/span> ADBC,EFBC

所以∠ADC=90°,∠EFD=90°

得∠ADC=EFD

所以 AD//EF

得∠2+3=180°

又因?yàn)椤?/span>1+2=180°(已知)

所以∠1=3

所以 DG//AB

所以∠CGD=CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.

(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;

(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點(diǎn).

1)求∠EDA的度數(shù);

2AB10,AC8,DE3,求SABC

查看答案和解析>>

同步練習(xí)冊(cè)答案