分析 設(shè)BF交CE于點(diǎn)H,根據(jù)菱形的對(duì)邊平行,利用相似三角形對(duì)應(yīng)邊成比例列式求出CH,然后求出DH,再求出點(diǎn)B到CD的距離以及點(diǎn)G到CE的距離;然后根據(jù)陰影部分的面積=S△BDH+S△FDH,根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得解.
解答 解:如圖,設(shè)BF交CE于點(diǎn)H,
∵菱形ECGF的邊CE∥GF,
∴△BCH∽△BGF,
∴CH:GF=BC:BG,
即CH:4=2:6
解得CH=$\frac{4}{3}$,
所以,DH=CD-CH=2-$\frac{4}{3}$=$\frac{2}{3}$,
∵∠ECG=∠ABC=60°,
∴點(diǎn)B到CD的距離為2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
點(diǎn)G到CE的距離為4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴陰影部分的面積=S△BDH+S△FDH,
=$\frac{1}{2}$×$\frac{2}{3}$×$\sqrt{3}$+$\frac{1}{2}$×$\frac{2}{3}$×2$\sqrt{3}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了菱形的對(duì)邊平行,鄰角互補(bǔ)的性質(zhì),相似三角形對(duì)應(yīng)邊成比例的性質(zhì),求出DH的長(zhǎng)度,把陰影部分的面積分成兩個(gè)三角形的面積進(jìn)行求解是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$-1 | B. | $\sqrt{5}$-2 | C. | 1+$\sqrt{5}$ | D. | 4-$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 11 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 55° | B. | 40° | C. | 35° | D. | 20° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com