【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長(zhǎng);
(2)如圖②,若∠CAB=60°,求BD的長(zhǎng).
【答案】(1)8;5;5;(2)5.
【解析】
試題(1)利用圓周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的長(zhǎng)度;利用圓心角、弧、弦的關(guān)系推知△DCB也是等腰三角形,所以利用勾股定理同樣得到BD=CD=5;
(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5.
試題解析:(1)如圖①,
∵BC是⊙O的直徑,
∴∠CAB=∠BDC=90°.
∵在直角△CAB中,BC=10,AB=6,
∴由勾股定理得到:AC=.
∵AD平分∠CAB,
∴,
∴CD=BD.
在直角△BDC中,BC=10,CD2+BD2=BC2,
∴易求BD=CD=5;
(2)如圖②,連接OB,OD.
∵AD平分∠CAB,且∠CAB=60°,
∴∠DAB=∠CAB=30°,
∴∠DOB=2∠DAB=60°.
又∵OB=OD,
∴△OBD是等邊三角形,
∴BD=OB=OD.
∵⊙O的直徑為10,則OB=5,
∴BD=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣4與x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣4上時(shí),Rt△OAB掃過(guò)的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)為延長(zhǎng)線上一點(diǎn)且,連接,在上截取,使,過(guò)點(diǎn)作平分,,分別交于點(diǎn)、.連接.
(1)若,求的長(zhǎng);
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一組數(shù)據(jù),,,,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,,,的方差是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過(guò)程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:則下列說(shuō)法錯(cuò)誤的是( 。
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | … |
A. 二次函數(shù)圖像與x軸交點(diǎn)有兩個(gè)
B. x≥2時(shí)y隨x的增大而增大
C. 二次函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)一個(gè)在-1~0之間,另一個(gè)在2~3之間
D. 對(duì)稱軸為直線x=1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”.
(1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長(zhǎng);
(2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對(duì)角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請(qǐng)你判斷此結(jié)論是否正確,若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉出反例;
(3)如圖2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分線上是否存在點(diǎn)P,使得以A,B,C,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”. 若存在,請(qǐng)求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,和的平分線交于邊上的一點(diǎn),且,則的長(zhǎng)是( )
A.10B.8C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D.AD與BC相交于點(diǎn)F,連結(jié)BE,DC,已知EF=2,CD=5,則AD=______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com