【題目】已知O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在O上,CAB的平分線交O于點(diǎn)D

1如圖,若BC為O的直徑,AB=6,求AC,BD,CD的長(zhǎng);

2如圖,若CAB=60°,求BD的長(zhǎng)

【答案】18;5;525

【解析

試題1利用圓周角定理可以判定CAB和DCB是直角三角形,利用勾股定理可以求得AC的長(zhǎng)度;利用圓心角、弧、弦的關(guān)系推知DCB也是等腰三角形,所以利用勾股定理同樣得到BD=CD=5

2如圖,連接OB,OD由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知OBD是等邊三角形,則BD=OB=OD=5

試題解析:1如圖,

BC是O的直徑,

∴∠CAB=BDC=90°

在直角CAB中,BC=10,AB=6,

由勾股定理得到:AC=

AD平分CAB,

,

CD=BD

在直角BDC中,BC=10,CD2+BD2=BC2

易求BD=CD=5;

2如圖,連接OB,OD

AD平分CAB,且CAB=60°,

∴∠DAB=CAB=30°

∴∠DOB=2DAB=60°

OB=OD,

∴△OBD是等邊三角形,

BD=OB=OD

∵⊙O的直徑為10,則OB=5,

BD=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx4x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰RtOAB,并將RtAOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線yx4上時(shí),RtOAB掃過(guò)的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,點(diǎn)延長(zhǎng)線上一點(diǎn)且,連接,在上截取,使,過(guò)點(diǎn)平分,,分別交于點(diǎn).連接.

(1)若,求的長(zhǎng);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:一組數(shù)據(jù),,,,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,的方差是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過(guò)程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%

1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?

3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:則下列說(shuō)法錯(cuò)誤的是( 。

x

-1

0

1

2

3

y

A. 二次函數(shù)圖像與x軸交點(diǎn)有兩個(gè)

B. x≥2時(shí)y隨x的增大而增大

C. 二次函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)一個(gè)在-1~0之間,另一個(gè)在2~3之間

D. 對(duì)稱軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”.

1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BCAB,BDCD,AB=3BD=4,求BC的長(zhǎng);

2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對(duì)角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請(qǐng)你判斷此結(jié)論是否正確,若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉出反例;

3)如圖2,在ABC中,AB=AC=BAC=90°.在AB的垂直平分線上是否存在點(diǎn)P,使得以A,BC,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”. 若存在,請(qǐng)求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形中,的平分線交于邊上的一點(diǎn),且,則的長(zhǎng)是(

A.10B.8C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D.AD與BC相交于點(diǎn)F,連結(jié)BE,DC,已知EF=2,CD=5,則AD=______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案