【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準等邊四邊形”.

1)已知:如圖1,在“準等邊四邊形”ABCD中,BCAB,BDCDAB=3,BD=4,求BC的長;

2)在探究性質(zhì)時,小明發(fā)現(xiàn)一個結(jié)論:對角線互相垂直的“準等邊四邊形”是菱形.請你判斷此結(jié)論是否正確,若正確,請說明理由;若不正確,請舉出反例;

3)如圖2,在ABC中,AB=AC=,BAC=90°.在AB的垂直平分線上是否存在點P,使得以A,BC,P為頂點的四邊形為“準等邊四邊形”. 若存在,請求出該“準等邊四邊形”的面積;若不存在,請說明理由.

【答案】(1)5;(2)正確,證明詳見解析;(3)存在,有四種情況,面積分別是:,,,

【解析】

1)根據(jù)勾股定理計算BC的長度,

2)根據(jù)對角線互相垂直平分的四邊形是菱形判斷,

3)有四種情況,作輔助線,將四邊形分成兩個三角形和一個四邊形或兩個三角形,相加可得結(jié)論.

1BDCD

BDC=90°,BC>CD

準等邊四邊形ABCD中,BCAB,

AB=AD=CD=3,

∵BD=4,

BC=,

2)正確.

如圖所示:

AB=AD

∴ΔABD是等腰三角形.

ACBD

AC垂直平分BD

BC=CD

CD =AB=AD=BC

四邊形 ABCD是菱形.

3)存在四種情況,

如圖2,四邊形ABPC準等邊四邊形”,CF,則,

EPAB的垂直平分線,

,

∴四邊形AEFC是矩形,

中, ,

,

如圖4,四邊形ABPC準等邊四邊形”,


,

是等邊三角形,

;

如圖5,四邊形ABPC準等邊四邊形”,

,PEAB的垂直平分線,

E是AB的中點,

,

如圖6,四邊形ABPC準等邊四邊形”,PF,連接AP,


,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】兩地相距300,甲、乙兩車同時從地出發(fā)駛向地,甲車到達地后立即返回,如圖是兩車離地的距離)與行駛時間)之間的函數(shù)圖象.

1)求甲車行駛過程中之間的函數(shù)解析式,并寫出自變量的取值范圍.

2)若兩車行駛5相遇,求乙車的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,E在AD上,F(xiàn)在AB上,EFCE于E,DE=AF=2,矩形的周長為24,則BF的長為( 。

A. 3 B. 4 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O的直徑為10,點A,點B,點C在O上,CAB的平分線交O于點D

1如圖,若BC為O的直徑,AB=6,求AC,BD,CD的長;

2如圖,若CAB=60°,求BD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點

C0,3

求該函數(shù)的關(guān)系式;

求改拋物線與x軸的交點A,B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊ABE、ADF,延長CBAE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等邊;CGAE( 。

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

1)請將下表補充完整:

2)請從下列三個不同的角度對這次測試結(jié)果進行分析:

①從平均數(shù)和方差相結(jié)合看,  的成績好些;

②從平均數(shù)和中位數(shù)相結(jié)合看,  的成績好些;

③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB 90,BAC 30, AB2,DAB邊上的一個動點(點D不與點A、B重合),連接CD,過點DCD的垂線交射線CA于點E.當ADE為等腰三角形時,AD的長度為__________

查看答案和解析>>

同步練習冊答案