【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.
(1)試說明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關系,并說明理由.
【答案】(1)詳見解析;(2)直線AO垂直平分BC
【解析】
(1)根據(jù)對邊對等角得到∠ABC=∠ACB,再結合角平分線的定義得到∠OBC=∠OCB,從而證明OB=OC;
(2)首先根據(jù)全等三角形的判定和性質得到OA平分∠BAC,再根據(jù)等腰三角形的三線合一的性質得到直線AO垂直平分BC.
(1)∵ 在△ABC中,AB=AC,
∴ ∠ABC=∠BCA,
∵ BD、CE分別平分∠ABC、∠BCA,
∴ ∠ABD=∠CBD ,∠ACE=∠BCE,
∴ ∠OBC=∠BCO,
∴ OB=OC,
∴ △OBC為等腰三角形;
(2)在△AOB與△AOC中,
∵,
∴△AOB≌△AOC(SSS),
∴∠BAO=∠CAO,∴直線AO垂直平分BC.(等腰三角形頂角的平分線、底邊上的高、底邊上的中線互相重合)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.
(1)若∠DAB=50°,求∠ATC的度數(shù);
(2)若⊙O半徑為2,TC=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,李強在教學樓的點P處觀察對面的辦公大樓,為了求得對面辦公大樓的高度,李強測得辦公大樓頂部點A的仰角為30°,測得辦公大樓底部點B的俯角為37°,已知測量點P到對面辦公大樓上部AD的距離PM為30m,辦公大樓平臺CD=10m.求辦公大樓的高度(結果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有A、B兩種手機上網(wǎng)計費方式,收費標準如下表所示:
計費方式 | 月使用費/元 | 包月上網(wǎng)時間/分 | 超時費/(元/分) |
A | 30 | 120 | 0.20 |
B | 60 | 320 | 0.25 |
設上網(wǎng)時間為x分鐘,
(1)若按方式A和方式B的收費金額相等,求x的值;
(2)若上網(wǎng)時間x超過320分鐘,選擇哪一種方式更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合實踐
如圖①,,垂足分別為點,.
(1)求的長;
(2)將所在直線旋轉到的外部,如圖②,猜想之間的數(shù)量關系,直接寫出結論,不需證明;
(3)如圖③,將圖①中的條件改為:在中,三點在同一直線上,并且,其中為任意鈍角.猜想之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料1:
對于兩個正實數(shù),由于,所以,即,所以得到,并且當時,
閱讀材料2:
若,則 ,因為,,所以由閱讀材料1可得:,即的最小值是2,只有時,即=1時取得最小值.
根據(jù)以上閱讀材料,請回答以下問題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當= 時,有最小值,最小值為 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年.某電動車商場為適應電動車進電梯的需求,需要購進100輛某型號的小型電動車供客戶作宣傳,經(jīng)調查,該小型電動車2015年單價為2000元,2017年單價為1620元.
(1)求2015年到2017年該小型電動車單價平均每年降低的百分率;
(2)選購期間發(fā)現(xiàn)該小型電動車在A,B兩個廠家有不同的促銷方案,A廠家買十送一,B廠家全場打九折,試問去哪個廠家買更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個構造完全相同(除所標數(shù)字外)的轉盤A、B.
(1)單獨轉動A盤,指向奇數(shù)的概率是 ;
(2)小紅和小明做了一個游戲,游戲規(guī)定,轉動兩個轉盤各一次,兩次轉動后指針指向的數(shù)字之和為奇數(shù)則小紅獲勝,數(shù)字之和為偶數(shù)則小明獲勝,請用樹狀圖或列表說明誰獲勝的可能性大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在兩個同心圓⊙O中,大圓的弦AB與小圓相交于C,D兩點.
(1)求證:AC=BD;
(2)若AC=2,BC=4,大圓的半徑R=5,求小圓的半徑r的值;
(3)若ACBC等于12,請直接寫出兩圓之間圓環(huán)的面積.(結果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com