【題目】今年.某電動車商場為適應(yīng)電動車進(jìn)電梯的需求,需要購進(jìn)100輛某型號的小型電動車供客戶作宣傳,經(jīng)調(diào)查,該小型電動車2015年單價為2000元,2017年單價為1620元.
(1)求2015年到2017年該小型電動車單價平均每年降低的百分率;
(2)選購期間發(fā)現(xiàn)該小型電動車在A,B兩個廠家有不同的促銷方案,A廠家買十送一,B廠家全場打九折,試問去哪個廠家買更優(yōu)惠?
【答案】(1)2015年到2017年該小型電動車單價平均每年降低的百分率為10%;(2)去B廠家購買電動車更優(yōu)惠.
【解析】
(1)設(shè)2015年到2017年該小型電動車單價平均每年降低的百分率為x,根據(jù)2015年及2017年該電動車的單價,即可得出關(guān)于x的一元二次方程,解之取其小于1的值即可得出結(jié)論;
(2)根據(jù)兩廠家的促銷方案,分別求出在兩廠家購買100輛該型號的小型電動車的總費用,比較后即可得出結(jié)論.
(1)設(shè)2015年到2017年該小型電動車單價平均每年降低的百分率為x,根據(jù)題意得:
2000×(1﹣x)2=1620
解得:x=0.1=10%,或x=1.9(舍去).
答:2015年到2017年該小型電動車單價平均每年降低的百分率為10%.
(2)100×=≈90.91(輛),在A廠家需要的費用為1620×91=147420(元),在B廠家需要的費用為1620×100×0.9=145800(元).
而147420>145800,故去B廠家購買電動車更優(yōu)惠.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是邊長為2的等邊三角形,點P為直線BC上的動點,把線段AP繞A點逆時針旋轉(zhuǎn)60°至AE,O為AB邊上一動點,則OE的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.
(1)試說明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)S是數(shù)據(jù),……,的標(biāo)準(zhǔn)差,Sˊ是……,的標(biāo)準(zhǔn)差,則有( )
A.S= SˊB.Sˊ=S-5C.Sˊ=(S-5)2D.Sˊ=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店新進(jìn)一種臺燈.這種臺燈的成本價為每個30元,經(jīng)調(diào)查發(fā)現(xiàn),這種臺燈每天的銷售量y(單位:個)是銷售單價x(單位:元)(30≤x≤60)的一次函數(shù).
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求銷售量y與銷售單價x之間的函數(shù)表達(dá)式;
(2)設(shè)這種臺燈每天的銷售利潤為w元.這種臺燈銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線y=x2﹣4x+3.
(1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 .
(2)在坐標(biāo)系中利用描點法畫出此拋物線;
x | … |
|
|
|
|
| … |
y | … |
|
|
|
|
| … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片紙沿對角線折疊,設(shè)重疊部分為△,那么,下列說法錯誤的是( )
A.△是等腰三角形,
B.折疊后∠ABE和∠CBD一定相等
C.折疊后得到的圖形是軸對稱圖形
D.△EBA和△EDC一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,的三個頂點坐標(biāo)分別為,,.
(1)先畫出關(guān)于軸對稱的;再畫出關(guān)于軸對稱的,并寫出頂點的坐標(biāo).
(2)求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com