【題目】如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對角線AC、BD應(yīng)滿足條件__________.
【答案】AC=BD.
【解析】試題分析:添加的條件應(yīng)為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.
試題解析:添加的條件應(yīng)為:AC=BD.
證明:∵E,F,G,H分別是邊AB、BC、CD、DA的中點(diǎn),
∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
則HG∥EF且HG=EF,
∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,
∴四邊形EFGH為菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)C在反比例函數(shù)y=的圖象上,點(diǎn)D的坐標(biāo)為(-4,-3),邊CD與x軸交于點(diǎn)E.
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)點(diǎn)D落在函數(shù)y=的圖象上時(shí),求菱形ABCD平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制數(shù)進(jìn)行處理的,二進(jìn)制即“逢2進(jìn)1”,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制形式是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制(1111)2轉(zhuǎn)換成十進(jìn)制形式是( )
A.8
B.15
C.30
D.31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)直接寫出△ABC關(guān)于x軸對稱的△A2B2C2的各點(diǎn)坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列表達(dá)式中,不能表示代數(shù)式“6a”意義的是( 。
A.6個(gè)a相乘
B.a的6倍
C.6個(gè)a相加
D.6的a倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同.
(1)從箱子中隨機(jī)摸出一個(gè)球是白球的概率是
(2)從箱子中隨機(jī)摸出一個(gè)球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出的球都是白球的概率,并畫出樹狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次綠色環(huán)保知識競賽中,共有20道題,對于每一道題,答對了得10分,答錯了或不答扣5分,則至少要答對_____道題,其得分才會不少于80分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點(diǎn),AE⊥CD于E,BF⊥CD交CD的延長線于F,CH⊥AB于H點(diǎn),交AE于G.
(1)試說明AH=BH
(2)求證:BD=CG.
(3)探索AE與EF、BF之間的數(shù)量關(guān)系
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com