【題目】如圖,點C是線段AB的中點,延長線段AB至點D,使BD=AB,延長AD至點E,使DE=AC

1)依題意畫出圖形(尺規(guī)作圖),則=_________(直接寫出結(jié)果);

2)若DE=3,求AB的長;

3)請寫出與BE長度相同的線段.

【答案】1)如圖所示,見解析,=;(2;(3

【解析】

1)根據(jù)題意畫出圖形,由BE=,代入即可計算;

2)根據(jù)線段的中點的定義即可得出結(jié)論;

3)根據(jù)線段中點的定義以及線段的和差即可得出結(jié)論.

解:(1)如圖所示:

∵點C是線段AB的中點,

,

DE=AC,

BE=BD+DE=AB+=,

,

故答案為:

2)∵點C是線段AB的中點,

,

,

3=BE

∵點C是線段AB的中點,

,

BC=DE,

BC+BD=DE+BD

CD=BE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,邊的中點,分別是上的動點,連接,則的最小值是(

A. 6B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為順利通過“文明城市”驗收,鹽城市政府擬對部分地區(qū)進行改造,根據(jù)市政建設(shè)需要,須在16天之內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊,經(jīng)調(diào)查知道:乙隊單獨完成此工程的時間是甲隊單獨完成此工程時間的2倍,若甲、乙兩隊合作只需12天完成.

(1)求甲、乙工程隊單獨完成這項工程各需要多少天?

(2)兩隊合作完成此項工程,若甲隊參與施工a天,乙隊參與施工b天,試用含a的代數(shù)式表示b;

(3)若甲隊每天的工程費用是0.6萬元, 乙隊每天的工程費用是0.25萬元,請你設(shè)計一種方案,既能按時完工,又能使工程費最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知2a1的平方根是±33a+b9的立方根是2,c的整數(shù)部分,求a+2b+c的值.

2)有四個實數(shù)分別為32,

請你計算其中有理數(shù)的和.

x2中的和的平方,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,已知拋物線經(jīng)過,兩點,頂點為.

(1)求拋物線的解析式;

(2)將繞點順時針旋轉(zhuǎn)后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關(guān)系式;

(3)設(shè)(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠A=60°,點P是射線AM上一動點(不與點A重合).BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D

(發(fā)現(xiàn))

1)∵AMBN,∴∠ACB=_______;(填相等的角)

2)求∠ABN、∠CBD的度數(shù);

解:∵AMBN,

∴∠ABN+A=180°

∵∠A=60°,

∴∠ABN=ABP+PBN=______

BC平分∠ABP,BD平分∠PBN,

∴∠ABP=2CBP,∠PBN=______,

2CBP+2DBP=120°,

∴∠CBD=CBP+DBP=______

(操作)

3)當點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在某年某月的日歷中,任意圈出一豎列相鄰的三個數(shù),設(shè)中間的一個數(shù)為,則用含的代數(shù)式表示這三個數(shù)分別是__________;(按從小到大的順序?qū)懺跈M線上)

2)現(xiàn)將連續(xù)自然數(shù)1~2007按圖(2)的方式排成一個長方形陣形然后用一個正方形框出16個數(shù).

①圖中框出的這16個數(shù)的和是__________;

②在圖(2)中,要使一個正方形框出的16個數(shù)的和等于20162168,是否可能?若不可能,請說明理由;若有可能,請求出該正方形框出的16個數(shù)中的最小數(shù)和最大數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E

1)求證:①△ADC≌△CEB②DE=AD+BE

2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DEAD、BE又怎樣的關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點A(2,0),B(-1,0),與y軸交于點C,且OC=2.則這條拋物線的表達式為(  )

A. y=x2-x-2

B. y=-x2+x+2

C. y=x2-x-2或y=-x2+x+2

D. y=-x2-x-2或y=x2+x+2

查看答案和解析>>

同步練習(xí)冊答案