分析 首先求出S關(guān)于r的函數(shù)表達(dá)式,分析其增減性;然后根據(jù)r的取值,求出S的最大值與最小值,從而得到S的取值范圍.
解答 解:如右圖所示,過點(diǎn)D作DG⊥BC于點(diǎn)G,易知G為BC的中點(diǎn),CG=2.
在Rt△CDG中,由勾股定理得:DG=$\sqrt{C{D}^{2}-C{G}^{2}}$=$\sqrt{{r}^{2}-4}$.
設(shè)∠DCG=θ,則由題意可得:
S=2(S扇形CDE-S△CDG)=2($\frac{θπ{r}^{2}}{360}$-$\frac{1}{2}$×2×$\sqrt{{r}^{2}-4}$)=$\frac{θπ{r}^{2}}{180}$-2$\sqrt{{r}^{2}-4}$,
當(dāng)r增大時(shí),∠DCG=θ隨之增大,故S隨r的增大而增大.
當(dāng)r=2$\sqrt{2}$時(shí),DG=$\sqrt{{r}^{2}-4}$=2,
∵CG=2,
∴θ=45°,
∴S=$\frac{45π×(2\sqrt{2})^{2}}{180}$-2$\sqrt{(2\sqrt{2})^{2}-4}$=2π-4;
若r=4,則DG=$\sqrt{{r}^{2}-4}$=2$\sqrt{3}$,
∵CG=2,
∴θ=60°,
∴S=$\frac{60π×{4}^{2}}{180}$-2$\sqrt{{4}^{2}-4}$=$\frac{16π}{3}$-4$\sqrt{3}$.
∴S的取值范圍是:2π-4≤S<$\frac{16π}{3}$-4$\sqrt{3}$.
故答案為:2π-4≤x≤$\frac{16}{3}$π-4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查扇形面積的計(jì)算、等邊三角形的性質(zhì)、勾股定理等重要知識(shí)點(diǎn).解題關(guān)鍵是求出S的函數(shù)表達(dá)式,并分析其增減性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8$\sqrt{3}$ | B. | 6 | C. | 4$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com