【題目】我們定義:“四個頂點都在三角形邊上的正方形是三角形的內(nèi)接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖l,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長a1是________;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,那么第2個正方形DGHI的邊長記為a2;繼續(xù)在圖2中的△HGA中按上述方法作第3個內(nèi)接正方形……以此類推,則第n個內(nèi)接正方形的邊長an=____. (n為正整數(shù))
【答案】 2
【解析】(1)由正方形的性質(zhì)可以得出△BFE∽△BCA,再根據(jù)相似三角形的性質(zhì)就可以把正方形CDEF的邊長表示出來,從而得出結(jié)論.
(2)由正方形的性質(zhì)可以得出△EIH∽△EDA,再根據(jù)相似三角形的性質(zhì)就可以把正方形IDGF的邊長表示出來,從而得出結(jié)論,通過計算得出的結(jié)論尋找其中的變化規(guī)律就可以得出第n個內(nèi)接正方形的邊長的值.
解:(1)四邊形CDEF是正方形,
∴EF=FC,EF∥FC,
∴△BFE∽△BCA,
∴=.設(shè)EF=FC=a,
∴=,
∴a=2,
故答案是:2
(2)如圖(2)四邊形DGHI是正方形,
∴IH=ID,IH∥AD,
∴△EIH∽△EDA,
∴=,設(shè)IH=ID=b,AD=4,DE=2,
∴=,
∴b=,
故答案是:,
如圖(3)由以上同樣的方法可以求得正方形PGQS的邊長為:=,
∴第4的個正方形的邊長為:=…
∴第n個內(nèi)接正方形的邊長an=
故答案為:.
本題考查了正方形的性質(zhì)的運用,相似三角形的判定與性質(zhì),勾股定理的運用及規(guī)律的探索.
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富學生課余生活,某區(qū)教育部分準備在七年級開設(shè)興趣課堂,為了了解學生對音樂、書法、球類、繪畫這四個興趣小組的喜愛情況,在全區(qū)進行隨機抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中音樂部分的圓心角的度數(shù);
(3)如果該區(qū)七年級共有2000名學生參加這4個課外興趣小組,則參加繪畫興趣小組的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,CA=CB=3,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖所示放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)當PN∥BC時,判斷△ACP的形狀,并說明理由.
(2)在點P滑動的過程中,當AP長度為多少時,△ADP≌△BPC,為什么?
(3)在點P的滑動過程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請說明理由;若可以,請直接寫出α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知△ABC的頂點均為網(wǎng)格線的交點.
(1)將△ABC向下平移5個單位長度,再向左平移1個單位長度,畫出平移后的△A1B1C1;
(2)畫出△A1B1C1關(guān)于直線l軸對稱的△A2B2C2;
(3)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C3以A、A3、B、B3為頂點的四邊形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有_____填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點 P 在平面直角坐標系中按圖中箭頭所示方向運動,第 1 次從原點運動到點(1,1),第 2 次接著運動到點(2,0),第 3 次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2025 次運動后,動點 P 的坐標是( )
A.(2025,1)B.(2025,0)C.(2026,2)D.(2026,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水 3000 噸,計劃內(nèi)用水每噸收費 0.5元,超計劃部分每噸按 0.8 元收費.
(1)寫出該單位水費 y(元)與每月用水量 x(噸)之間的函數(shù)關(guān)系式:(寫出自變量取值范圍)
①用水量小于等于 3000 噸 ;
②用水量大于 3000 噸 .
(2)某月該單位用水 3200 噸,水費是 元;若用水 2800 噸,水費 元.
(3)若某月該單位繳納水費 1580 元,則該單位用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中E、F分別是邊AD、BC的中點,AC分別交BE、DF于點M、N,對于下列結(jié)論:①△ABE≌△CDF;②AM=MN=NC;③EM=BM,④S△ABM=S△AME,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com