【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴OA=OC,OB=OD,AC=BD,∠ABC=90°,

∵BE=DF,

∴OE=OF,

在△AOE和△COF中, ,

∴△AOE≌△COF(SAS),

∴AE=CF;


(2)解:∵OA=OC,OB=OD,AC=BD,

∴OA=OB,

∵∠AOB=∠COD=60°,

∴△AOB是等邊三角形,

∴OA=AB=6,

∴AC=2OA=12,

在Rt△ABC中,BC= =6

∴矩形ABCD的面積=ABBC=6×6 =36


【解析】(1)由矩形的性質(zhì)得出OA=OC,OB=OD,AC=BD,∠ABC=90°,證出OE=OF,由SAS證明△AOE≌△COF,即可得出AE=CF;(2)證出△AOB是等邊三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC= =6 ,即可得出矩形ABCD的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對稱,…,如此作下去,則△B2015A2016B2016的頂點(diǎn)A2016的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 軸于A、B兩點(diǎn),以AB為直徑的圓交 軸于C、D兩點(diǎn),則OC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個(gè)小球上分別標(biāo)有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個(gè)不透明的袋子里,從袋子中隨機(jī)地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機(jī)地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(diǎn)(m,n).
(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(diǎn)(m,n)所有可能的結(jié)果;
(2)求點(diǎn)(m,n)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60n mile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為( )

A.60 n mile
B.60 n mile
C.30 n mile
D.30 n mile

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對應(yīng)邊為A'.若點(diǎn)A'到矩形較長兩對邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點(diǎn)P(2,4).已知點(diǎn)A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點(diǎn)O移動(dòng)到點(diǎn)P,得到△A'PB'.過點(diǎn)A'作A'C∥y軸交雙曲線于點(diǎn)C.

(1)求k1與k2的值;
(2)求直線PC的表達(dá)式;
(3)直接寫出線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點(diǎn),O是AB上一點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F.
(1)用尺規(guī)補(bǔ)全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2 ,∠CAD=30°時(shí),求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進(jìn)一步普及足球知識,傳播足球文化,我市舉行了“足球進(jìn)校園”知識競賽活動(dòng),為了解足球知識的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

獲獎(jiǎng)等次

頻數(shù)

頻率

一等獎(jiǎng)

10

0.05

二等獎(jiǎng)

20

0.10

三等獎(jiǎng)

30

b

優(yōu)勝獎(jiǎng)

a

0.30

鼓勵(lì)獎(jiǎng)

80

0.40

請根據(jù)所給信息,解答下列問題:

(1)a= , b= ,
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來描述獲獎(jiǎng)分布情況,問獲得優(yōu)勝獎(jiǎng)對應(yīng)的扇形圓心角的度數(shù)是多少?
(4)在這次競賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級競賽,請用樹狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

查看答案和解析>>

同步練習(xí)冊答案