【題目】如圖1,已知拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn).
(l)求拋物線的表達(dá)式;
(2)如圖l,若點(diǎn)為第二象限拋物線上一動(dòng)點(diǎn),連接,求四邊形面積的最大值,并求此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,在軸上是否存在一點(diǎn)使得為等腰三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)最大值為,點(diǎn)坐標(biāo)為;(3)存在符合條件的點(diǎn),其坐標(biāo)為或,或或
【解析】
(1)將點(diǎn)A、B的坐標(biāo)代入解析式即可得到答案;
(2)設(shè),過(guò)點(diǎn)作軸于點(diǎn),利用求出解析式即得到面積的最大值及點(diǎn)E的坐標(biāo);
(3)存在,分以點(diǎn)C、A為頂點(diǎn)及線段AC為底邊三種情況,分別求出點(diǎn)D的坐標(biāo)即可.
解:(1)由題知:
,解得:
∴所求拋物線表達(dá)式為
(2)過(guò)點(diǎn)作軸于點(diǎn)
設(shè)
∴,,,
∴
∴當(dāng)時(shí),最大,且最大值為.
當(dāng)時(shí),
此時(shí),點(diǎn)坐標(biāo)為
(3)連接
①當(dāng)點(diǎn)為頂點(diǎn),時(shí),此時(shí)為底邊的垂直平分線,
滿足條件的點(diǎn),與點(diǎn)關(guān)于軸對(duì)稱,
∴點(diǎn)坐標(biāo)為
②當(dāng)點(diǎn)為頂點(diǎn),時(shí),在中,
∵,,由勾股定理得:,
以點(diǎn)為圓心,的長(zhǎng)為半徑作弧,交軸于兩點(diǎn),即為滿足條件的點(diǎn),
此時(shí)它們的坐標(biāo)分別為,
③當(dāng)為底邊時(shí),線段的垂直平分線與軸的交點(diǎn),即為滿足條件的點(diǎn),
設(shè)垂直的垂直平分線交軸于點(diǎn),過(guò)中點(diǎn),
∵,
∴
∴
∴,,
,,,
點(diǎn)的坐標(biāo)為
綜上所述存在符合條件的點(diǎn),其坐標(biāo)為或,或或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰中,,,且AC邊在直線a上,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn),此時(shí);將位置①的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn),此時(shí);將位置②的三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn),此時(shí) ________,…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若凸四邊形的兩條對(duì)角線所夾銳角為60°,我們稱這樣的凸四邊形為“完美四邊形”.
(1)①在“平行四邊形、梯形、菱形、正方形”中,一定不是“完美四邊形”的有 ;
②若矩形ABCD是“完美四邊形”,且AB=4,則BC= ;
(2)如圖1,“完美四邊形”ABCD內(nèi)接于⊙O,AC與BD相交于點(diǎn)P,且對(duì)角線AC為直徑,AP=1,PC=5,求另一條對(duì)角線BD的長(zhǎng);
(3)如圖2,平面直角坐標(biāo)系中,已知“完美四邊形”ABCD的四個(gè)頂點(diǎn)A(﹣3,0)、C (2,0),B在第三象限,D在第一象限,AC與BD交于點(diǎn)O,直線BD的斜率為,且四邊形ABCD的面積為15,若二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象同時(shí)經(jīng)過(guò)這四個(gè)頂點(diǎn),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:(保留作圖痕跡,不寫(xiě)做法)
(1)已知:如圖,四邊形ABCD與四邊形EFGH成中心對(duì)稱,試畫(huà)出它們的對(duì)稱中心O。
(2)考古學(xué)家在考古過(guò)程中發(fā)現(xiàn)一個(gè)圓盤(pán),但是因?yàn)闅v史悠久,已經(jīng)有一部分缺失,如圖所示.現(xiàn)希望復(fù)原圓盤(pán),需要先找到圓盤(pán)的圓心,才能繼續(xù)完成后續(xù)修復(fù)工作.請(qǐng)利用直尺(無(wú)刻度)和圓規(guī),在圖中找出圓心O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y-x稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”
(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。
②拋物線y=-x2+3x+3的“特征值”為 。
(2)某二次函數(shù)y=-x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。
①直接寫(xiě)出m= (用含c的式子表示)
②求此二次函數(shù)的表達(dá)式。
(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫(xiě)出⊙M的“特征值”為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為.
(1)將向左平移3個(gè)單位得到,畫(huà)出;
(2)在第三象限內(nèi),以為位似中心,將放大到原大的2倍,畫(huà)出放大后對(duì)應(yīng)的;
(3)寫(xiě)出的坐標(biāo)______,的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀探索:“任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半?”(完成下列空格)
(1)當(dāng)已知矩形A的邊長(zhǎng)分別為6和1時(shí),小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:,消去y化簡(jiǎn)得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長(zhǎng)分別為2和1,請(qǐng)你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長(zhǎng)為m和n,請(qǐng)你研究滿足什么條件時(shí),矩形B存在?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>
(1)“從中任意抽取1個(gè)球不是紅球就是白球”是 事件,“從中任意抽取1個(gè)球是黑球”是 事件;
(2)從中任意抽取1個(gè)球恰好是紅球的概率是 ;
(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙.甲、乙兩名同學(xué)被選中的概率各是多少?你認(rèn)為這個(gè)規(guī)則公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷(xiāo)售一種新型產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷(xiāo)售方案中選擇一種進(jìn)行銷(xiāo)售.若只在國(guó)內(nèi)銷(xiāo)售,銷(xiāo)售價(jià)格y(元/件)與月銷(xiāo)量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為50元/件,無(wú)論銷(xiāo)售多少,每月還需支出廣告費(fèi)90000元,設(shè)月利潤(rùn)為w內(nèi)(元),若只在國(guó)外銷(xiāo)售,銷(xiāo)售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10a40),當(dāng)月銷(xiāo)量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤(rùn)為w外(元).
(1)當(dāng)x=1000時(shí),y= 元/件,w內(nèi)= 元;
(2)分別求出w內(nèi),w外與x間的函數(shù)關(guān)系式(不必寫(xiě)x的取值范圍);
(3)當(dāng)x為何值時(shí),在國(guó)內(nèi)銷(xiāo)售的月利潤(rùn)最大?若在國(guó)外銷(xiāo)售月利潤(rùn)的最大值與在國(guó)內(nèi)銷(xiāo)售月利潤(rùn)的最大值相同,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com