【題目】給出如下四個(gè)命題,其中原命題與逆命題均為真命題的個(gè)數(shù)是(

①若,則;

,則;

角的平分線上的點(diǎn)到角的兩邊的距離相等;

線段的垂直平分線上的點(diǎn)到線段兩端點(diǎn)距離相等.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】A

【解析】

利用不等式的性質(zhì)、角平分線的性質(zhì)、垂直平分線的性質(zhì)分別判斷后即可確定正確的結(jié)論.

,,原命題正確,逆命題:如果,那么不一定正確,故不合題意;

,原命題錯(cuò)誤,逆命題正確;

角的平分線上的點(diǎn)到角的兩邊的距離相等,原命題正確;逆命題為“到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上”,不一定正確,要加前提:在角的內(nèi)部.所以逆命題錯(cuò)誤.

線段的垂直平分線上的點(diǎn)到線段兩端點(diǎn)距離相等,原命題與逆命題均正確.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)得到ADE,其中∠B50°,∠C60°

1)若AD平分∠BAC時(shí),求∠BAD的度數(shù).

2)若ACDE時(shí),ACDE交于點(diǎn)F,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸的交點(diǎn)坐標(biāo)為(2,0),則下列說法:

①yx的增大而減;②b>0;③關(guān)于x的方程kx+b=0的解為x=2;④不等式kx+b>0的解集是x>2.

其中說法正確的有_________(把你認(rèn)為說法正確的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題

王大伯承包了25畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,用去了44000元.其中種茄子每畝用了1700元,獲純利2400元;種西紅柿每畝用了1800元,獲純利2600元.

問(1)茄子和西紅柿各種了多少畝?

(2)王大伯一共獲純利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)為A、B分別在y軸正半軸、x軸負(fù)半軸上,直線CD分別交x軸正半軸、y軸負(fù)半軸于點(diǎn)CD,且ABCD

1)如圖1,若點(diǎn)A0,a)和點(diǎn)Bb,0)的坐標(biāo)滿足

。┲苯訉懗a、b的值,a_____b_____;

ⅱ)把線段AB平移,使B點(diǎn)的對(duì)應(yīng)點(diǎn)Ex軸距離為1A點(diǎn)的對(duì)應(yīng)點(diǎn)Fy軸的距離為2,且EF與兩坐標(biāo)軸沒有交點(diǎn),則F點(diǎn)的坐標(biāo)為_____;

2)若GCD延長(zhǎng)線上一點(diǎn)DP平分∠ADG,BH平分∠ABOBH的反向延長(zhǎng)線交DPP(如圖2),求∠HPD的度數(shù);

3)若∠BAO30°,點(diǎn)Qx軸(不含點(diǎn)B、C)上運(yùn)動(dòng),AM平分∠BAQ,QN平分∠AQC,(如圖3)真接出∠BAM與∠NQC滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y=﹣ 在第二象限內(nèi)圖象上一點(diǎn),點(diǎn)B是反比例函數(shù)y= 在第一象限內(nèi)圖象上一點(diǎn),直線AB與y軸交于點(diǎn)C,且AC=BC,連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出關(guān)于軸對(duì)稱的,并寫出各頂點(diǎn)的坐標(biāo);

(2)將向右平移6個(gè)單位,作出平移后的,并寫出各頂點(diǎn)的坐標(biāo);

(3)觀察,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)用粗線條畫出對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DE垂直平分AB,分別交AB,BC于點(diǎn)D,EMN垂直平分AC,分別交ACBC于點(diǎn)M,N.

(1)如圖,若BAC = 110°,求EAN的度數(shù);

(2)如圖,若BAC =80°,求EAN的度數(shù);

(3)BAC = α(α ≠ 90°),直接寫出用α表示EAN大小的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,菱形ABCD的對(duì)角線ACBD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)EF,使AE=CF,依次連接BFD,E各點(diǎn).

1)求證:△BAE≌△BCF;

2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案