【題目】6分)如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F,使AE=CF,依次連接B,FD,E各點.

1)求證:△BAE≌△BCF

2)若∠ABC=50°,則當∠EBA= °時,四邊形BFDE是正方形.

【答案】1)證明見試題解析;(220

【解析】

試題(1)先證∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;

2)由已知可得四邊形BFDE對角線互相垂直平分,只要∠EBF=90°即得四邊形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=20°

試題解析:(1菱形ABCD的對角線AC,BD相交于點O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE△BCF中,∵BA=BC,∠BAE=∠BCF,AE=CF∴△BAE≌△BCFSAS);

2四邊形BFDE對角線互相垂直平分,只要∠EBF=90°即得四邊形BFDE是正方形,∵△BAE≌△BCF∴∠EBA=∠FBC,又∵∠ABC=50°∴∠EBA+∠FBC=40°,∴∠EBA=×40°=20°.故答案為:20

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】給出如下四個命題,其中原命題與逆命題均為真命題的個數(shù)是(

①若,,則;

,則;

角的平分線上的點到角的兩邊的距離相等;

線段的垂直平分線上的點到線段兩端點距離相等.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:我們在學習二次根式時,式子有意義,則x0;式子有意義,則x0;若式子+有意義,求x的取值范圍. 這個問題可以轉(zhuǎn)化為不等式組來解決,即求關于x的不等式組x0,x0的解集,解這個不等式組,得x=0. 請你運用上述的數(shù)學方法解決下列問題:

1)式子+有意義,求x的取值范圍;

(2)已知y=+-3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人以相同路線前往距離單位10km的培訓中心參加學習.圖中l、l分別表示甲、乙兩人前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:

①乙比甲提前12分鐘到達; ②甲的平均速度為15千米/小時;

③乙走了8km后遇到甲; ④乙出發(fā)6分鐘后追上甲.

其中正確的有_____________(填所有正確的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會決定從三名學生會干事中選拔一名干事,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>

測試項目

測試成績/

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率(沒有棄權(quán),每位同學只能推薦1人)如扇形統(tǒng)計圖所示,每得一票記1分.

1)扇形統(tǒng)計圖中= , 分別計算三人民主評議的得分;

2)根據(jù)實際需要,學校將筆試、面試、民主評議三項得分按433的比例確定個人成績,得分最高者將被選中,通過計算說明三人中誰被選中?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果商在批發(fā)市場按每千克1.5元批發(fā)了若干千克的西瓜進城出售,為了方面他帶了一些零錢備用.他先按市場價售出一些后,又降價出售.售出西瓜的重量(千克)與他手中持有的錢數(shù)(元)(含備用零錢)的關系如圖所示,結(jié)合圖象回答下列問題:

1)水果商自帶的零錢是多少?

2)降價前他每千克西瓜出售的價格是多少?

3)隨后他按每千克下降0.5元的價格將剩余的西瓜售完,這時他手中的錢(含備用零錢)是400元,他一共批發(fā)了多少千克的西瓜?

4)這個水果商一共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,教師出示某區(qū)籃球賽積分表如下:

(1)從表中可以看出,負一場積多少分,勝一場積多少分;

(2)請你幫忙算出二隊勝了多少場?

(3)在這次比賽中,一個隊勝場總積分能不能等于它的負場總積分?

(4)在計算五隊、六隊勝出場次的時候,老師還沒等同學們計算出來就立刻說出了答案,老師解釋說:“我是通過找到積分與勝場之間的數(shù)量關系求出來的,請你說出其中的奧秘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為4,點E,F(xiàn)分別在邊BC、CD上,∠EAF=45°,若AEAF= ,則EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB為⊙O的直徑,CD為⊙O的弦,CD∥AB,過點B的切線與射線AD交于點M,連接AC,BD.

(1)如圖l,求證:AC=BD;
(2)如圖2,延長AC、BD交于點F,作直徑DE,連接AE、CE,CE與AB交于點N,求證:∠AFB=2∠AEN;
(3)如圖3,在(2)的條件下,過點M作MQ⊥AF于點Q,若MQ:QC=3:2,NE=2,求QF的長.

查看答案和解析>>

同步練習冊答案