【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡(jiǎn)單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱(chēng)為歐拉公式請(qǐng)你觀察下列幾種簡(jiǎn)單多面體模型,解答下列問(wèn)題:

(1)根據(jù)上面多面體的模型,完成表格中的空格:

多面體

頂點(diǎn)數(shù)(V

面數(shù)(F

棱數(shù)(E

四面體

4

4

長(zhǎng)方體

8

12

正八面體

8

12

正十二面體

20

12

30

(2)你發(fā)現(xiàn)頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是E=________;

(3)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)大8,棱數(shù)為30,則這個(gè)多面體的面數(shù)是多少?

【答案】6;6;6

【解析】試題分析:

(1)由圖形可得;

(2)觀察可得頂點(diǎn)數(shù)+面數(shù)-棱數(shù)=2;
(3)代入(2)中的式子即可得到面數(shù);

試題解析:

(1)6;6;6

(2)四面體的棱數(shù)為6;正八面體的頂點(diǎn)數(shù)為6;關(guān)系式為:V+F﹣E=2;
(3)由題意得:F﹣8+F﹣30=2,
解得F=20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a﹣b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí).

(1)如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|

(2)如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|

(3)如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|

綜上,數(shù)軸上A、B兩點(diǎn)的距離|AB|=|a﹣b|

回答下列問(wèn)題:

(1)數(shù)軸上表示25的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣25的兩點(diǎn)之間的距離是   

(2)數(shù)軸上表示x和﹣1的兩點(diǎn)AB之間的距離是   ,如果|AB|=2那么x   

(3)若x表示一個(gè)有理數(shù),則|x﹣1|+|x+3|有最小值嗎?若有,請(qǐng)求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件:①.在足球比賽中,中國(guó)男足戰(zhàn)勝德國(guó)男足;②.有交通信號(hào)燈的路口遇到紅燈;③.連續(xù)兩次拋擲一枚普通的正方體骰子得到的點(diǎn)數(shù)之和為13;④.任取一數(shù)為x,使它滿(mǎn)足x3x2.其中隨機(jī)事件有(  )

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出一個(gè)直角坐標(biāo)系中第二象限內(nèi)點(diǎn)的坐標(biāo):________.(任寫(xiě)一個(gè)只要符合條件即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用半徑為2cm的半圓圍成一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面半徑為(
A.1cm
B.2cm
C.πcm
D.2πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l與直線(xiàn)l外一點(diǎn)P,求作:過(guò)點(diǎn)P且垂直于直線(xiàn)l的垂線(xiàn)a(尺規(guī)作圖).

現(xiàn)給出一種作法,如下:

步驟一:在直線(xiàn)l外取一點(diǎn)E,以點(diǎn)P為圓心,以線(xiàn)段PE為半徑畫(huà)弧,交直線(xiàn)l于點(diǎn)M,N;

步驟二:分別以點(diǎn)M、N為圓心,大于線(xiàn)段MN為半徑畫(huà)弧,過(guò)兩弧的交點(diǎn)的直線(xiàn)a就是所求作的垂線(xiàn).

(1)按上述操作步驟,請(qǐng)成功作出過(guò)點(diǎn)P且垂直于直線(xiàn)l的垂線(xiàn)a.(符合要求的一種圖形),并說(shuō)明理由.

(2)從你作圖的過(guò)程中,思考要保證這種作法順利作出,線(xiàn)段PE應(yīng)該滿(mǎn)足什么條件?

(3)為了避免這種情況產(chǎn)生,小明說(shuō)只要在直線(xiàn)l上取點(diǎn)E好了,并給出了畫(huà)法,畫(huà)法對(duì)嗎?請(qǐng)說(shuō)明理由.

(作法:在直線(xiàn)l上取兩點(diǎn)B、D,以P為圓心,以PD 為半徑畫(huà)圓交直線(xiàn)l于點(diǎn)E,以P為圓心,以PB 為半徑畫(huà)圓交直線(xiàn)l于點(diǎn)F,其中較小圓分別交PB,PF于點(diǎn)M、N,連接E、ND、M,ENMD相交于點(diǎn)H,則PH就是所求的垂線(xiàn).)

(4)請(qǐng)?jiān)谥本(xiàn)l上取點(diǎn)E,用直尺和圓規(guī)過(guò)點(diǎn)P且垂直于直線(xiàn)l的垂線(xiàn)a(與小明不同的方法,并要求盡可能簡(jiǎn)單).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,點(diǎn)O是正方形A′B′C′O的一個(gè)頂點(diǎn).如果兩個(gè)正方形的邊長(zhǎng)都等于2,那么正方形A′B′C′OA繞O點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),兩個(gè)正方形重疊的部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥品說(shuō)明書(shū)上標(biāo)明藥品保存的溫度是(20±2)℃,該藥品在℃范圍內(nèi)保存才合適.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2﹣2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求B、C兩點(diǎn)的坐標(biāo);
(2)在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得△PAC的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線(xiàn)在第二象限內(nèi)是否存在一點(diǎn)Q,使△QBC的面積最大?,若存在,求出點(diǎn)Q的坐標(biāo)及△QBC的面積最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案