【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,AB=8,點E是AB的中點,以AE為邊作等邊△ADE(點D與點C分別在AB異側(cè)),連接CD,則△ACD的面積是_________.
【答案】
【解析】
連接CE,根據(jù)圓的定義,證明D、A、C、B四點共圓,可得∠ADC=∠ABC=45°,作AF⊥CD于F,構(gòu)建等腰直角三角形ADF和含30°角的直角三角形AFC,可以求得AF、DF、CF的長,利用三角形面積公式可得結(jié)論.
解:連接CE,
∵∠ACB=90°,E為AB的中點,
∴CE=AE=BE,
∵△ADE是等邊三角形,
∴DE=AE,
∴DE=AE=CE=BE,
∴D、A、C、B在以點E為圓心的圓上,作⊙E,
∴∠ADC=∠ABC=45°,
過A作AF⊥CD于F,
∴△ADF是等腰直角三角形,
∵AD=AE=AB=4,
∴AF=DF=,
∵∠CAF=∠DAB+∠BAC-∠DAF=60°+45°-45°=60°,
∴∠ACF=30°,
∴AC=2AF,
由勾股定理得:CF=,
∴S△ADC=,
故答案為:4+4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并解答下列問題:如圖1,把平面內(nèi)一條數(shù)軸繞原點逆時針旋轉(zhuǎn)角得到另一條數(shù)軸軸和軸構(gòu)成一個平面斜坐標(biāo)系
規(guī)定:過點作軸的平行線,交軸于點,過點作軸的平行線,交軸于點,若點在軸對應(yīng)的實數(shù)為,點在軸對應(yīng)的實數(shù)為,則稱有序?qū)崝?shù)對為點在平面斜坐標(biāo)系中的斜坐標(biāo).如圖2,在平面斜坐標(biāo)系中,已知,點的斜坐標(biāo)是,點的斜坐標(biāo)是
(1)連接,求線段的長;
(2)將線段繞點順時針旋轉(zhuǎn)到(點與點對應(yīng)),求點的斜坐標(biāo);
(3)若點是直線上一動點,在斜坐標(biāo)系確定的平面內(nèi)以點為圓心,長為半徑作,當(dāng)⊙與軸相切時,求點的斜坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在正方形ABCD中,點E是AB邊上的一個動點(點E與點A,B不重合),連接CE,過點B作于點G,交AD于點F.
(1)求證:;
(2)如圖(2),當(dāng)點E運動到AB的中點時,連接DG,求證:;
(3)如圖(3),在(2)的條件下,過點C作于點H,分別交AD,BF于點M,N,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014河南22題)
(1)問題發(fā)現(xiàn)
如圖①,和均為等邊三角形,點A、D、E在同一條直線上,連接BE;
填空:
①的度數(shù)為__________;
②線段AD、BE之間的數(shù)量關(guān)系為__________.
(2)拓展探究
如圖②,和均為等腰直角三角形,,點A、D、E在同一條直線上,CM為中DE邊上的高,連接BE.請判斷的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由;
(3)解決問題
如圖③,在正方形ABCD中,,若點P滿足,且,請直接寫出點A到BP的距離.
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰三角形,AB=AC,O是底邊BC的中點,⊙O與腰AB相切于點D.
(1)求證:AC與⊙O相切;
(2)已知AB=5,BC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)過市場調(diào)查,發(fā)現(xiàn)某種運動服的銷量與售價是一次函數(shù)關(guān)系,具體信息如表:
已知該運動服的進(jìn)價為每件150元.
(1)售價為x元,月銷量為y件.
①求y關(guān)于x的函數(shù)關(guān)系式:
②若銷售該運動服的月利潤為w元,求w關(guān)于x的函數(shù)關(guān)系式,并求月利潤最大時的售價;
(2)由于運動服進(jìn)價降低了a元,商家決定回饋顧客,打折銷售,這時月銷量與調(diào)整后的售價仍滿足(1)中函數(shù)關(guān)系式.結(jié)果發(fā)現(xiàn),此時月利潤最大時的售價比調(diào)整前月利潤最大時的售價低15元,則a的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)經(jīng)過點A(1,-1)、B(3,3),且當(dāng)1≤x≤3時,-1≤y≤3,則a的取值范圍是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點A且與x軸平行的直線交拋物線y=(x+1)2于B,C兩點,若線段BC的長為6,則點A的坐標(biāo)為( 。
A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市擬于中秋節(jié)前50天里銷售某品牌月餅,其進(jìn)價為18元/kg.設(shè)第x天的銷售價格為y(元/kg)銷售量為m(kg).該超市根據(jù)以往的銷售經(jīng)驗得出以下的銷售規(guī)律:①y與x滿足一次函數(shù)關(guān)系,且當(dāng)x=32時,y=39;x=40時,y=35.②m與x的關(guān)系為m=5x+50.
(1)y與x的關(guān)系式為______;
(2)當(dāng)34≤x≤50時,求第幾天的銷售利潤W(元)最大?最大利潤為多少?
(3)若在當(dāng)天銷售價格的基礎(chǔ)上漲a元/kg(0<a<10),在第31天至42天銷售利潤最大值為6250元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com