【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,a),B(0,b)在y軸上,點(diǎn) C(m,b)是第四象限內(nèi)一點(diǎn),且滿足,△ABC的面積是56;AC交x軸于點(diǎn)D,E是y軸負(fù)半軸上的一個(gè)動點(diǎn).
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,連接DE,若DEAC于D點(diǎn),EF為∠AED的平分線,交x軸于H點(diǎn),且∠DFE=90°,求證:FD平分∠ADO;
(3)如圖3,E在y軸負(fù)半軸上運(yùn)動時(shí),連EC,點(diǎn)P為AC延長線上一點(diǎn),EM平分 ∠AEC,且PM⊥EM于M點(diǎn),PN⊥x軸于N點(diǎn),PQ平分∠APN,交x軸于Q點(diǎn),則E在運(yùn)動過程中,的大小是否發(fā)生變化,若不變,求出其值;若變化,請說明理由.
【答案】(1)a=8,b=-6, AB=14, BC=8, C(8,-6);(2)見解析;(3)
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)求出a、b,得到點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)△ABC的面積是56的面積公式求出CB,得到點(diǎn)C的坐標(biāo);(2)根據(jù)三角形內(nèi)角和定理、“8字形”題、角平分線的定義計(jì)算即可;(2)因?yàn)?/span>EF為∠AED的平分線,∠DFE=90°,DEAC,所以∠AEF=∠DEF=90°-∠FDE=∠ADF,又因?yàn)椤?/span>AEF=90°-∠OHE=90°-∠DHF=∠ODF
所以∠ADF=∠ODF,可得FD平分∠ADO;(3)設(shè)∠AEM=∠CEM=,設(shè)∠APQ=∠NPQ=,因?yàn)?/span>PN∥AE ,由“M形”易得:(∠MPQ+∠NPQ)+∠AEM=∠M=90°, 即∠MPQ=90°-(+),∠CPN+∠CEA=∠ECP=180-∠ECA , 即∠ECA=180-2(+)從而求解.
解:(1)∵
∴a-8=0,b+6=0,
解得a=8,b=-6,
∴A(3,0)、B(0,-4).
∴OA=8,OB=6,AB=14.
∵S△ABC=×BC×AB= ×BC×14=56,
解得: BC=8,
∵C在第四象限,BC⊥y軸,
∴C(8,-6);
(2)∵EF為∠AED的平分線,∠DFE=90°,DEAC
∴∠AEF=∠DEF=90°-∠FDE=∠ADF
∠AEF=90°-∠OHE=90°-∠DHF=∠ODF
∴∠ADF=∠ODF,即FD平分∠ADO;
(3)設(shè)∠AEM=∠CEM=,設(shè)∠APQ=∠NPQ=,
∵PN∥AE 由“M形”易得:(∠MPQ+∠NPQ)+∠AEM=∠M=90°, 即∠MPQ=90°-(+),∠CPN+∠CEA=∠ECP=180-∠ECA , 即∠ECA=180-2(+)
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且∠PAE=∠E,PE交CD于點(diǎn)F.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線∥,一圓交直線a,b分別于A、B、C、D四點(diǎn),點(diǎn)P是圓上的一個(gè)動點(diǎn),連接PA、PC.
(1)如圖1,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 ;
(2)如圖2,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為
(3)如圖3,求證:∠P=∠PAB+∠PCD;
(4)如圖4,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教育部門準(zhǔn)備在七年級開設(shè)興趣課堂,以豐富學(xué)生課余生活.為了了解學(xué)生對音樂、書法、球類、繪畫這四個(gè)興趣小組的喜愛情況,在全區(qū)進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1) 此次共調(diào)查了 名同學(xué);
(2) 將條形圖補(bǔ)充完整,計(jì)算扇形統(tǒng)計(jì)圖中音樂部分的圓心角的度數(shù)是 ;
(3) 如果該區(qū)七年級共有2 000名學(xué)生參加這4個(gè)課外興趣小組,而每名教師最多只能輔導(dǎo)本組的20名學(xué)生,則繪畫興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖象上,當(dāng)x1=1、x2=3時(shí),y1=y2.
(1)①求m;②若拋物線與x軸只有一個(gè)公共點(diǎn),求n的值.
(2)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點(diǎn),且b1>b2,求實(shí)數(shù)a的取值范圍.
(3)若對于任意實(shí)數(shù)x1、x2都有y1+y2≥2,求n的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在□ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是( )
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)準(zhǔn)備搬入新校舍,在遷入新校舍前就該校300名學(xué)生如何到校問題進(jìn)行了一次調(diào)查,并得到如下數(shù)據(jù):
步行 | 65人 |
騎自行車 | 100人 |
坐公共汽車 | 125人 |
其他 | 10人 |
將上面的數(shù)據(jù)分別制成扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,CD是斜邊AB上的高.
(1)證明: ∽
(2)寫出除(1)外的另兩對相似三角形.
(3)AC是哪兩條線段的比例中項(xiàng)?請簡要證明(說明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com