【題目】小米利用暑期參加社會實踐,在媽媽的幫助下,利用社區(qū)提供的免費攤點賣玩具,已知小米所有玩具的進價均2元個,在銷售過程中發(fā)現(xiàn):每天玩具銷售量y件與銷售價格x元件的關系如圖所示,其中AB段為反比例函數(shù)圖象的一部分,BC段為一次函數(shù)圖象的一部分,設小米銷售這種玩具的日利潤為w元.
根據(jù)圖象,求出y與x之間的函數(shù)關系式;
求出每天銷售這種玩具的利潤元與元件之間的函數(shù)關系式,并求每天利潤的最大值;
若小米某天將價格定為超過4元,那么要使得小米在該天的銷售利潤不低于54元,求該天玩具銷售價格的取值范圍.
【答案】; 每天利潤的最大值為72元; 當時,小米的銷售利潤不低于54元.
【解析】
直接利用待定系數(shù)法得出反比例函數(shù)以及一次函數(shù)的解析式即可;
利用當時,當時,分別得出函數(shù)最值進而得出答案;
利用,得出x的值,進而得出答案.
段為反比例函數(shù)圖象的一部分,,
當時,,
段為一次函數(shù)圖象的一部分,且、,
設BC段為一次函數(shù)函數(shù)關系式為,有,
解得:
當時,,
與x之間的函數(shù)關系式為:;
當時,,
隨著x的增大,增大,也增大,
當時,w取得最大值為40,
當時,,
,,,
當時,w取得最大值為72,
綜上所述,每天利潤的最大值為72元;
由題意可知:,
令,即,
解得:,,
由函數(shù)表達式及函數(shù)圖象可知,要使,,
當時,小米的銷售利潤不低于54元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=24,D是BC的中點,AC的垂直平分線EF分別交AC、AD于點E、F,EF = 5 .
(1)求點F到邊AB的距離FG的長;
(2)求 F到B點的距離FB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,試探究線段BD與CE的數(shù)量關系與直線BD與CE相交構成的銳角的度數(shù).
(1)如圖①,當點D,E分別在△ABC的邊AB,AC上時,BD與CE的數(shù)量關系是___________,直線BD與CE相交構成的銳角的度數(shù)是_____________.
(2)將圖①中△DAE繞點A逆時針旋轉(zhuǎn)一個角度到圖②的位置,則(1)中的兩個結(jié)論是否仍然成立?說明理由.
(3)將圖②中△DAE繼續(xù)繞點A按逆時針方向繼續(xù)旋轉(zhuǎn)到點D落在CA的延長線時,請畫出圖形,并直接寫出(1)中的兩個結(jié)論是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當點E在邊BC上時,求證DE=EB;
(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;
(3)如圖3,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的頂點A、B分別在射線OM、ON上,當點B在ON上運動時,A隨之在OM上運動,△ABC的形狀始終保持不變,在運動的過程中,點C到點O的最小距離為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC與點D.
(1)如果BE=15,CE=9,求EF的長;
(2)證明:①△CDF∽△BAF;②CD=CE;
(3)探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點,AE⊥CD于E,BF⊥CD交CD的延長線于F,CH⊥AB于H點,交AE于G.
(1)試說明AH=BH
(2)求證:BD=CG.
(3)探索AE與EF、BF之間的數(shù)量關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N是對角線AC上的兩個動點,P是正方形四邊上的任意一點,且AB=4,MN=2,設AM=x,在下列關于△PMN是等腰三角形和對應P點個數(shù)的說法中,
①當x=0(即M、A兩點重合)時,P點有6個;
②當P點有8個時,x=2﹣2;
③當△PMN是等邊三角形時,P點有4個;
④當0<x<4﹣2時,P點最多有9個.
其中結(jié)論正確的是( 。
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com